Abstract

We demonstrate controllable double magneto-optical traps (DMOTs) on an atom chip: At first, DMOTs, which trap atoms directly from the background rubidium vapor in an ultrahigh-vacuum environment, are realized on an atom chip simultaneously. The double quadrupole magnetic fields are produced by two separate U-shaped microwires on the atom chip, combined with a bias magnetic field. Then, we determine the best parameters for a U-shaped magneto-optical trap (UMOT) through a detailed comparison of the capture ability at different currents and the bias magnetic field between two different geometric sizes of UMOT. Finally, we demonstrate the mixing and splitting of the DMOTs on the atom chip with the help of an extra pair of anti-Helmholtz coils.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol., Opt. Phys. 48, 263-356 (2002).
    [CrossRef]
  2. J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235-289 (2007).
    [CrossRef]
  3. J. J. Hu and J. P. Yin, “Controllable double-well magnetic traps for neutral atoms,” J. Opt. Soc. Am. B 19, 2844-2851 (2002).
    [CrossRef]
  4. J. J. Hu, J. P. Yin, and J. J. Hu, “Double-well surface magneto-optical traps for neutral atoms in a vapor cell,” J. Opt. Soc. Am. B 22, 937-942 (2005).
    [CrossRef]
  5. M. Yun and J. P. Yin, “Controllable double-well magneto-optic atom trap with a circular current-carrying wire,” Opt. Lett. 30, 696-698 (2005).
    [CrossRef]
  6. M. E. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two-species surface trap,” Phys. Rev. A 69, 063408-063411 (2004).
    [CrossRef]
  7. M. Tscherneck, J. Kleinert, C. Haimberger, M. E. Holmes, and N. P. Bigelow, “Creating, detecting and locating ultracold molecules in a surface trap,” Appl. Phys. B: Lasers Opt. 80, 639-643 (2005).
    [CrossRef]
  8. J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005).
    [CrossRef]
  9. M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
    [CrossRef]
  10. M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008).
    [CrossRef]
  11. P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel, “Transporting, splitting and merging of atomic ensembles in a chip trap,” New J. Phys. 7, 3-19 (2005).
    [CrossRef]
  12. R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002).
    [CrossRef] [PubMed]
  13. R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
    [CrossRef]
  14. M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
    [CrossRef]
  15. T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
    [CrossRef]
  16. Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
    [CrossRef]
  17. W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Trapped-atom interferometer in a magnetic microtrap,” Phys. Rev. A 64, 063607-063612 (2001).
    [CrossRef]
  18. J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phys. Rev. A 75, 013404-013414 (2007).
    [CrossRef]
  19. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005).
    [CrossRef]
  20. J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
    [CrossRef]
  21. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413-418 (2001).
    [CrossRef]
  22. Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
    [CrossRef]
  23. S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007).
    [CrossRef]
  24. J. Reichel, W. Hansell, and T. W. Hansch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
    [CrossRef]
  25. S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
    [CrossRef]
  26. B. Lev, “Fabrication of micro-magnetic traps for cold neutral atoms,” Quantum Inf. Comput. 3, 450-464 (2003).
  27. X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005).
    [CrossRef]

2008

M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008).
[CrossRef]

Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
[CrossRef]

2007

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007).
[CrossRef]

J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
[CrossRef]

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phys. Rev. A 75, 013404-013414 (2007).
[CrossRef]

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235-289 (2007).
[CrossRef]

2006

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

2005

M. Tscherneck, J. Kleinert, C. Haimberger, M. E. Holmes, and N. P. Bigelow, “Creating, detecting and locating ultracold molecules in a surface trap,” Appl. Phys. B: Lasers Opt. 80, 639-643 (2005).
[CrossRef]

J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005).
[CrossRef]

P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel, “Transporting, splitting and merging of atomic ensembles in a chip trap,” New J. Phys. 7, 3-19 (2005).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005).
[CrossRef]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

M. Yun and J. P. Yin, “Controllable double-well magneto-optic atom trap with a circular current-carrying wire,” Opt. Lett. 30, 696-698 (2005).
[CrossRef]

J. J. Hu, J. P. Yin, and J. J. Hu, “Double-well surface magneto-optical traps for neutral atoms in a vapor cell,” J. Opt. Soc. Am. B 22, 937-942 (2005).
[CrossRef]

X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005).
[CrossRef]

2004

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

M. E. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two-species surface trap,” Phys. Rev. A 69, 063408-063411 (2004).
[CrossRef]

2003

B. Lev, “Fabrication of micro-magnetic traps for cold neutral atoms,” Quantum Inf. Comput. 3, 450-464 (2003).

2002

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol., Opt. Phys. 48, 263-356 (2002).
[CrossRef]

J. J. Hu and J. P. Yin, “Controllable double-well magnetic traps for neutral atoms,” J. Opt. Soc. Am. B 19, 2844-2851 (2002).
[CrossRef]

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002).
[CrossRef] [PubMed]

2001

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Trapped-atom interferometer in a magnetic microtrap,” Phys. Rev. A 64, 063607-063612 (2001).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413-418 (2001).
[CrossRef]

1999

J. Reichel, W. Hansell, and T. W. Hansch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

1997

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef]

Akulshin, A.

M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008).
[CrossRef]

Andersen, H. K.

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phys. Rev. A 75, 013404-013414 (2007).
[CrossRef]

Andersson, L. M.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

Andrews, M. R.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef]

Ashmore, J. P.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Aspect, A.

J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005).
[CrossRef]

Bar-Joseph, I.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

Baumberg, J. J.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Becker, C.

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

Bertelsen, J. F.

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phys. Rev. A 75, 013404-013414 (2007).
[CrossRef]

Bigelow, N. P.

M. Tscherneck, J. Kleinert, C. Haimberger, M. E. Holmes, and N. P. Bigelow, “Creating, detecting and locating ultracold molecules in a surface trap,” Appl. Phys. B: Lasers Opt. 80, 639-643 (2005).
[CrossRef]

M. E. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two-species surface trap,” Phys. Rev. A 69, 063408-063411 (2004).
[CrossRef]

Birkl, G.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002).
[CrossRef] [PubMed]

Bouchoule, I.

J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005).
[CrossRef]

Brajdic, M.

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

Buchkremer, F. B. J.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002).
[CrossRef] [PubMed]

Budde, M.

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phys. Rev. A 75, 013404-013414 (2007).
[CrossRef]

Chen, S.

Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
[CrossRef]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007).
[CrossRef]

Chen, Y. A.

Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
[CrossRef]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007).
[CrossRef]

Choi, K. S.

J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
[CrossRef]

Chou, C. W.

J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005).
[CrossRef]

Chuu, C. S.

Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
[CrossRef]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413-418 (2001).
[CrossRef]

Curtis, E. A.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

de Riedmatten, H.

J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005).
[CrossRef]

Deng, H.

J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
[CrossRef]

Denschlag, J.

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol., Opt. Phys. 48, 263-356 (2002).
[CrossRef]

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413-418 (2001).
[CrossRef]

Dumke, R.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002).
[CrossRef] [PubMed]

Durfee, D. S.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef]

Eriksson, S.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Ertmer, W.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002).
[CrossRef] [PubMed]

Esteve, J.

J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005).
[CrossRef]

Felinto, D.

J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005).
[CrossRef]

Fernholz, T.

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

Folman, R.

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol., Opt. Phys. 48, 263-356 (2002).
[CrossRef]

Fortagh, J.

J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235-289 (2007).
[CrossRef]

Gerritsma, R.

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

Goedkoop, J. B.

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

Gollasch, C.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Groth, S.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

Haimberger, C.

M. Tscherneck, J. Kleinert, C. Haimberger, M. E. Holmes, and N. P. Bigelow, “Creating, detecting and locating ultracold molecules in a surface trap,” Appl. Phys. B: Lasers Opt. 80, 639-643 (2005).
[CrossRef]

Hannaford, P.

M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008).
[CrossRef]

Hansch, T. W.

P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel, “Transporting, splitting and merging of atomic ensembles in a chip trap,” New J. Phys. 7, 3-19 (2005).
[CrossRef]

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Trapped-atom interferometer in a magnetic microtrap,” Phys. Rev. A 64, 063607-063612 (2001).
[CrossRef]

J. Reichel, W. Hansell, and T. W. Hansch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Hansel, W.

P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel, “Transporting, splitting and merging of atomic ensembles in a chip trap,” New J. Phys. 7, 3-19 (2005).
[CrossRef]

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Trapped-atom interferometer in a magnetic microtrap,” Phys. Rev. A 64, 063607-063612 (2001).
[CrossRef]

Hansell, W.

J. Reichel, W. Hansell, and T. W. Hansch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Haupt, S.

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

Henkel, C.

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol., Opt. Phys. 48, 263-356 (2002).
[CrossRef]

Hinds, E. A.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Hofferberth, S.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

Holmes, M. E.

M. Tscherneck, J. Kleinert, C. Haimberger, M. E. Holmes, and N. P. Bigelow, “Creating, detecting and locating ultracold molecules in a surface trap,” Appl. Phys. B: Lasers Opt. 80, 639-643 (2005).
[CrossRef]

M. E. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two-species surface trap,” Phys. Rev. A 69, 063408-063411 (2004).
[CrossRef]

Hommelhoff, P.

P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel, “Transporting, splitting and merging of atomic ensembles in a chip trap,” New J. Phys. 7, 3-19 (2005).
[CrossRef]

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Trapped-atom interferometer in a magnetic microtrap,” Phys. Rev. A 64, 063607-063612 (2001).
[CrossRef]

Hu, J. J.

Jo, G. B.

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

Kasper, A.

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

Ke, M.

X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005).
[CrossRef]

Ketterle, W.

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef]

Kimble, H. J.

J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005).
[CrossRef]

Kleinert, J.

M. Tscherneck, J. Kleinert, C. Haimberger, M. E. Holmes, and N. P. Bigelow, “Creating, detecting and locating ultracold molecules in a surface trap,” Appl. Phys. B: Lasers Opt. 80, 639-643 (2005).
[CrossRef]

Kraft, M.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Kruger, P.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol., Opt. Phys. 48, 263-356 (2002).
[CrossRef]

Kurn, D. M.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef]

Laurat, J.

J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
[CrossRef]

Lev, B.

B. Lev, “Fabrication of micro-magnetic traps for cold neutral atoms,” Quantum Inf. Comput. 3, 450-464 (2003).

Li, X. L.

X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005).
[CrossRef]

Luigjes, J. A.

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

Lukin, M. D.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413-418 (2001).
[CrossRef]

Mai, S.

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phys. Rev. A 75, 013404-013414 (2007).
[CrossRef]

McLean, R.

M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008).
[CrossRef]

Miesner, H. J.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef]

Moktadir, Z.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Muther, T.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002).
[CrossRef] [PubMed]

Pan, J. W.

Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
[CrossRef]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007).
[CrossRef]

Pasquini, T. A.

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

Polyakov, S. V.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005).
[CrossRef]

Prakash, G. V.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Prentiss, M.

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

Pritchard, D. E.

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

Quinto-Su, P. A.

M. E. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two-species surface trap,” Phys. Rev. A 69, 063408-063411 (2004).
[CrossRef]

Ramirez-Martinez, F.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Reichel, J.

P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel, “Transporting, splitting and merging of atomic ensembles in a chip trap,” New J. Phys. 7, 3-19 (2005).
[CrossRef]

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Trapped-atom interferometer in a magnetic microtrap,” Phys. Rev. A 64, 063607-063612 (2001).
[CrossRef]

J. Reichel, W. Hansell, and T. W. Hansch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Saba, M.

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

Sanner, C.

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

Schlatter, H.

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

Schmiedmayer, J.

Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
[CrossRef]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007).
[CrossRef]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol., Opt. Phys. 48, 263-356 (2002).
[CrossRef]

Schumm, T.

J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005).
[CrossRef]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

Shin, Y.

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

Sidorov, A.

M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008).
[CrossRef]

Singh, M.

M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008).
[CrossRef]

Spreeuw, R. J. C.

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

Steinmetz, T.

P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel, “Transporting, splitting and merging of atomic ensembles in a chip trap,” New J. Phys. 7, 3-19 (2005).
[CrossRef]

Tang, J. Y.

X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005).
[CrossRef]

Thiele, J. U.

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

Townsend, C. G.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef]

Trebbia, J. B.

J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005).
[CrossRef]

Trupke, M.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Tscherneck, M.

M. Tscherneck, J. Kleinert, C. Haimberger, M. E. Holmes, and N. P. Bigelow, “Creating, detecting and locating ultracold molecules in a surface trap,” Appl. Phys. B: Lasers Opt. 80, 639-643 (2005).
[CrossRef]

M. E. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two-species surface trap,” Phys. Rev. A 69, 063408-063411 (2004).
[CrossRef]

van Enk, S. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005).
[CrossRef]

Vengalattore, M.

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

Volk, M.

M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008).
[CrossRef]

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002).
[CrossRef] [PubMed]

Wang, Y. Z.

X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005).
[CrossRef]

Westbrook, C. I.

J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005).
[CrossRef]

Whitlock, S.

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

Wildermuth, S.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

Yin, J. P.

Yuan, Z. S.

Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
[CrossRef]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007).
[CrossRef]

Yun, M.

Zhao, B.

Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
[CrossRef]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007).
[CrossRef]

Zhou, S. Y.

X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005).
[CrossRef]

X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005).
[CrossRef]

Zimmermann, C.

J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235-289 (2007).
[CrossRef]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413-418 (2001).
[CrossRef]

Adv. At., Mol., Opt. Phys.

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol., Opt. Phys. 48, 263-356 (2002).
[CrossRef]

Appl. Phys. B: Lasers Opt.

M. Tscherneck, J. Kleinert, C. Haimberger, M. E. Holmes, and N. P. Bigelow, “Creating, detecting and locating ultracold molecules in a surface trap,” Appl. Phys. B: Lasers Opt. 80, 639-643 (2005).
[CrossRef]

Appl. Phys. Lett.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006).
[CrossRef]

Chin. Phys. Lett.

X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005).
[CrossRef]

Eur. Phys. J. D

J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008).
[CrossRef]

Nat. Phys.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005).
[CrossRef]

Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008).
[CrossRef]

Nature

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413-418 (2001).
[CrossRef]

New J. Phys.

J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007).
[CrossRef]

P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel, “Transporting, splitting and merging of atomic ensembles in a chip trap,” New J. Phys. 7, 3-19 (2005).
[CrossRef]

Opt. Lett.

Phys. Rev. A

S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004).
[CrossRef]

R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007).
[CrossRef]

M. E. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two-species surface trap,” Phys. Rev. A 69, 063408-063411 (2004).
[CrossRef]

Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005).
[CrossRef]

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Trapped-atom interferometer in a magnetic microtrap,” Phys. Rev. A 64, 063607-063612 (2001).
[CrossRef]

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phys. Rev. A 75, 013404-013414 (2007).
[CrossRef]

Phys. Rev. Lett.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002).
[CrossRef] [PubMed]

S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007).
[CrossRef]

J. Reichel, W. Hansell, and T. W. Hansch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Quantum Inf. Comput.

B. Lev, “Fabrication of micro-magnetic traps for cold neutral atoms,” Quantum Inf. Comput. 3, 450-464 (2003).

Rev. Mod. Phys.

J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235-289 (2007).
[CrossRef]

Science

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Wire diagram of our atom chip, including U-shaped traps, guiding wires, double Y-shaped splitting and combining wires. Only the double dark U-shaped wires (a, b) are used in the present experiment.

Fig. 2
Fig. 2

Magnetic field distribution and capture volume of the double MOTs. (a) Z direction magnetic field distribution, I = 1 A , B bias = 1 G , 2 G , 4 G . (b) X direction magnetic field distribution, I = 1 A . (c) Capture volumes versus different bias magnetic fields; the dashed curve refers to the U(a) MOT and the solid curve refers to the U(b) MOT.

Fig. 3
Fig. 3

Experimental setup of the double MOTs; it is the same as for a normal UMOT. Two pairs of laser beams are used; one pair is propagated in the plane of the atom chip, and the other pair is reflected by the chip at an angle of 45°. The double microquadrupole magnetic fields are provided by two U-shaped wires on the chip and an extra bias magnetic field that is provided by a pair of Helmholtz coils.

Fig. 4
Fig. 4

(a) Magnetic field distribution in the X Z plane. There are three quadrupole magnetic fields in the X Z plane, but the center one does not satisfy the MOT condition. (b) Fluorescence picture of the double MOT. The dashed lines on the top of both figures represent the position of the atom chip.

Fig. 5
Fig. 5

(a) Fluorescence picture (left) and X direction density distribution (right) of the cold atoms in the U(a) MOT. (b) Fluorescence picture (left) and X direction density distribution (right) of cold atoms in the U(b) MOT.

Fig. 6
Fig. 6

(a) Experimental (dots and squares) and theoretical (triangles and rhombuses) trapped atom numbers versus different bias magnetic fields for the DMOTs. The current is settled at 0.8 A . (b) Experimental and theoretical trapped atom numbers versus different currents in the wires for the DMOTs. The bias magnetic field is settled at 1.2 G .

Fig. 7
Fig. 7

Magnetic field distributions versus different currents in the extra pair of anti-Helmholtz coils.

Fig. 8
Fig. 8

(a) Mixing of the DMOTs, (b) splitting of the DMOTs.

Fig. 9
Fig. 9

Separation distances versus different currents in the extra pair of anti-Helmholtz coils; the dots are the experimental result, and the line is the theoretical result.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B = μ 0 I 2 π r + B bias ,

Metrics