Abstract

We investigate the influence of fast frequency fluctuations of an interrogation laser on the obtainable signal-to-noise ratio in Ramsey–Bordé atom interferometers. It is shown that the excessive high-frequency noise of diode lasers can degrade the signal-to-noise ratio significantly in an atom interferometer. To overcome these limitations, we have devised a low-noise light source by frequency filtering a diode laser in a high-finesse cavity and further amplifying the transmitted power by injection locking a solitary laser diode. When this laser source was used for atom interferometry with laser-cooled calcium atoms, the signal-to-noise ratio could be improved further by a factor of 3.5 compared with the use of the unfiltered 1Hz linewidth laser source.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Bordé, “Atomic interferometry with internal state labelling,” Phys. Lett. A 140, 10-12 (1989).
    [CrossRef]
  2. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181-184 (1991).
    [CrossRef]
  3. D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, “Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope,” Phys. Rev. Lett. 97, 240801 (2006).
    [CrossRef]
  4. J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74-77 (2007).
    [CrossRef]
  5. H. Müller, S. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
    [CrossRef]
  6. B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
    [CrossRef]
  7. C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
    [CrossRef]
  8. G. Wilpers, C. Oates, and L. Hollberg, “Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: results for a high-stability Ca40 optical frequency standard,” Appl. Phys. B 85, 31-44 (2006).
    [CrossRef]
  9. S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
    [CrossRef]
  10. G. Dick, “Local oscillator induced instabilities in trapped ion frequency standards,” in Proceedings of 19th Annual Precise Time and Time Interval Application and Planning Meeting (1987), pp.133-141.
  11. A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003).
    [CrossRef]
  12. P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005).
    [CrossRef]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  14. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736-738 (2006).
    [CrossRef]
  15. T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531-536 (2006).
    [CrossRef]
  16. M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815-1817 (2005).
    [CrossRef]
  17. S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
    [CrossRef]
  18. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
    [CrossRef]
  19. J. Hald and V. Ruseva, “Efficient suppression of diode-laser phase noise by optical filtering,” J. Opt. Soc. Am. B 22, 2338-2344 (2005).
    [CrossRef]
  20. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and J. R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner,” Opt. Lett. 23, 1704-1706 (1998).
    [CrossRef]
  21. Y. Zhang, K. Hayasaka, and K. Kasai, “Efficient noise suppression of an amplified diode-laser by optical filtering and resonant optical feedback,” Appl. Phys. B 86, 643-646 (2007).
    [CrossRef]
  22. J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, and K. Hayasaka, “Compact, filtered diode laser system for precision spectroscopy,” Opt. Lett. 32, 572-574 (2007).
    [CrossRef]
  23. M. E. Hines, J. R. Collinet, and J. G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. Microwave Theory Tech. MTT-16, 738-741 (1968).
    [CrossRef]
  24. P. Gallion, H. Nakajima, D. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 21, 626-628 (1985).
    [CrossRef]
  25. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070-2074 (1986).
    [CrossRef]
  26. P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14, 3923-3928 (2006).
    [CrossRef]
  27. T. Nazarova, “Towards the quantum noise limit in Ramsey-Bordé atom interferometry,” Ph.D. thesis, Fakultät für Mathematik und Physik der Gottfried Wilhelm Leibniz Universität Hannover (2007), available online at http://www.tib.uni-hannover.de.
  28. W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
    [CrossRef]
  29. C. W. Oates, Y. L. Coq, G. Wilpers, and L. Hollberg, “A compact high stability optical clock based on laser-cooled ca,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), (2006), pp. 346-349.

2008 (1)

H. Müller, S. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[CrossRef]

2007 (5)

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74-77 (2007).
[CrossRef]

S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
[CrossRef]

Y. Zhang, K. Hayasaka, and K. Kasai, “Efficient noise suppression of an amplified diode-laser by optical filtering and resonant optical feedback,” Appl. Phys. B 86, 643-646 (2007).
[CrossRef]

J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, and K. Hayasaka, “Compact, filtered diode laser system for precision spectroscopy,” Opt. Lett. 32, 572-574 (2007).
[CrossRef]

T. Nazarova, “Towards the quantum noise limit in Ramsey-Bordé atom interferometry,” Ph.D. thesis, Fakultät für Mathematik und Physik der Gottfried Wilhelm Leibniz Universität Hannover (2007), available online at http://www.tib.uni-hannover.de.

2006 (7)

P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14, 3923-3928 (2006).
[CrossRef]

C. W. Oates, Y. L. Coq, G. Wilpers, and L. Hollberg, “A compact high stability optical clock based on laser-cooled ca,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), (2006), pp. 346-349.

H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736-738 (2006).
[CrossRef]

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531-536 (2006).
[CrossRef]

D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, “Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope,” Phys. Rev. Lett. 97, 240801 (2006).
[CrossRef]

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

G. Wilpers, C. Oates, and L. Hollberg, “Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: results for a high-stability Ca40 optical frequency standard,” Appl. Phys. B 85, 31-44 (2006).
[CrossRef]

2005 (5)

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815-1817 (2005).
[CrossRef]

P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005).
[CrossRef]

J. Hald and V. Ruseva, “Efficient suppression of diode-laser phase noise by optical filtering,” J. Opt. Soc. Am. B 22, 2338-2344 (2005).
[CrossRef]

2004 (1)

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

2003 (1)

A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003).
[CrossRef]

1998 (1)

1993 (1)

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

1991 (1)

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181-184 (1991).
[CrossRef]

1989 (1)

C. J. Bordé, “Atomic interferometry with internal state labelling,” Phys. Lett. A 140, 10-12 (1989).
[CrossRef]

1987 (1)

G. Dick, “Local oscillator induced instabilities in trapped ion frequency standards,” in Proceedings of 19th Annual Precise Time and Time Interval Application and Planning Meeting (1987), pp.133-141.

1986 (1)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070-2074 (1986).
[CrossRef]

1985 (1)

P. Gallion, H. Nakajima, D. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 21, 626-628 (1985).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1968 (1)

M. E. Hines, J. R. Collinet, and J. G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. Microwave Theory Tech. MTT-16, 738-741 (1968).
[CrossRef]

Abgrall, M.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Bergquist, J. C.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

Bize, S.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Bollinger, J. J.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

Bordé, C. J.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

C. J. Bordé, “Atomic interferometry with internal state labelling,” Phys. Lett. A 140, 10-12 (1989).
[CrossRef]

Bouyer, P.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

Brown, K. R.

Byer, R. L.

Cacciapuoti, L.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Camp, J.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

Canuel, B.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005).
[CrossRef]

Chabran, C.

P. Gallion, H. Nakajima, D. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 21, 626-628 (1985).
[CrossRef]

Cheinet, P.

P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005).
[CrossRef]

Chiow, S.

H. Müller, S. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[CrossRef]

Chu, S.

H. Müller, S. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[CrossRef]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181-184 (1991).
[CrossRef]

Chuang, I. L.

Chung, K.-Y.

H. Müller, S. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[CrossRef]

Clairon, A.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003).
[CrossRef]

Collinet, J. R.

M. E. Hines, J. R. Collinet, and J. G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. Microwave Theory Tech. MTT-16, 738-741 (1968).
[CrossRef]

Coq, Y. L.

C. W. Oates, Y. L. Coq, G. Wilpers, and L. Hollberg, “A compact high stability optical clock based on laser-cooled ca,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), (2006), pp. 346-349.

Courtillot, I.

A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003).
[CrossRef]

Debarge, D.

P. Gallion, H. Nakajima, D. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 21, 626-628 (1985).
[CrossRef]

Degenhardt, C.

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Dick, G.

G. Dick, “Local oscillator induced instabilities in trapped ion frequency standards,” in Proceedings of 19th Annual Precise Time and Time Interval Application and Planning Meeting (1987), pp.133-141.

Dimarcq, N.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

dos Santos, F. P.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Durfee, D. S.

D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, “Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope,” Phys. Rev. Lett. 97, 240801 (2006).
[CrossRef]

Fils, J.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

Fixler, J. B.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74-77 (2007).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Foster, G. T.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74-77 (2007).
[CrossRef]

Gallion, P.

P. Gallion, H. Nakajima, D. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 21, 626-628 (1985).
[CrossRef]

Gauguet, A.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005).
[CrossRef]

Gill, P.

S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
[CrossRef]

Gilligan, J. M.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

Grünert, J.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Gustafson, E. K.

Hald, J.

Hall, J. L.

M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815-1817 (2005).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Hayasaka, K.

Y. Zhang, K. Hayasaka, and K. Kasai, “Efficient noise suppression of an amplified diode-laser by optical filtering and resonant optical feedback,” Appl. Phys. B 86, 643-646 (2007).
[CrossRef]

J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, and K. Hayasaka, “Compact, filtered diode laser system for precision spectroscopy,” Opt. Lett. 32, 572-574 (2007).
[CrossRef]

Heinzen, D. J.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

Helmcke, J.

H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736-738 (2006).
[CrossRef]

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Herrmann, S.

H. Müller, S. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[CrossRef]

Hines, M. E.

M. E. Hines, J. R. Collinet, and J. G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. Microwave Theory Tech. MTT-16, 738-741 (1968).
[CrossRef]

Hollberg, L.

C. W. Oates, Y. L. Coq, G. Wilpers, and L. Hollberg, “A compact high stability optical clock based on laser-cooled ca,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), (2006), pp. 346-349.

G. Wilpers, C. Oates, and L. Hollberg, “Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: results for a high-stability Ca40 optical frequency standard,” Appl. Phys. B 85, 31-44 (2006).
[CrossRef]

Holleville, D.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

Horak, P.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Itano, W. M.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

Kasai, K.

Y. Zhang, K. Hayasaka, and K. Kasai, “Efficient noise suppression of an amplified diode-laser by optical filtering and resonant optical feedback,” Appl. Phys. B 86, 643-646 (2007).
[CrossRef]

Kasevich, M.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74-77 (2007).
[CrossRef]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181-184 (1991).
[CrossRef]

Kasevich, M. A.

D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, “Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope,” Phys. Rev. Lett. 97, 240801 (2006).
[CrossRef]

Kemery, A.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

King, P. J.

Kovacich, R. P.

A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Kruger, M. S.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070-2074 (1986).
[CrossRef]

Labaziewicz, J.

Landragin, A.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005).
[CrossRef]

Laurent, P.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Leduc, F.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005).
[CrossRef]

Lemonde, P.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003).
[CrossRef]

Lipphardt, B.

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Lisdat, C.

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Loh, W. H.

Luiten, A.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Ma, L.-S.

Maksimovic, I.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Mandelberg, H. I.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070-2074 (1986).
[CrossRef]

Marion, H.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

McGrath, P. A.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070-2074 (1986).
[CrossRef]

McGuirk, J. M.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74-77 (2007).
[CrossRef]

Mensing, F.

Moore, F. L.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

Müller, H.

H. Müller, S. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Nakajima, H.

P. Gallion, H. Nakajima, D. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 21, 626-628 (1985).
[CrossRef]

Nazarova, T.

T. Nazarova, “Towards the quantum noise limit in Ramsey-Bordé atom interferometry,” Ph.D. thesis, Fakultät für Mathematik und Physik der Gottfried Wilhelm Leibniz Universität Hannover (2007), available online at http://www.tib.uni-hannover.de.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531-536 (2006).
[CrossRef]

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Notcutt, M.

Numata, K.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

Oates, C.

G. Wilpers, C. Oates, and L. Hollberg, “Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: results for a high-stability Ca40 optical frequency standard,” Appl. Phys. B 85, 31-44 (2006).
[CrossRef]

Oates, C. W.

C. W. Oates, Y. L. Coq, G. Wilpers, and L. Hollberg, “A compact high stability optical clock based on laser-cooled ca,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), (2006), pp. 346-349.

Ondria, J. G.

M. E. Hines, J. R. Collinet, and J. G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. Microwave Theory Tech. MTT-16, 738-741 (1968).
[CrossRef]

Oxborrow, M.

S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
[CrossRef]

Pottie, P.-E.

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Quessada, A.

A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003).
[CrossRef]

Raizen, M. G.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

Richerme, P.

Richter, L. E.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070-2074 (1986).
[CrossRef]

Riehle, F.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531-536 (2006).
[CrossRef]

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Rosenbusch, P.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Ruseva, V.

Salomon, C.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Santarelli, G.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003).
[CrossRef]

Santos, F. P. D.

P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005).
[CrossRef]

Savage, J. R. L.

Schnatz, H.

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Seel, S. U.

Shaham, Y. K.

D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, “Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope,” Phys. Rev. Lett. 97, 240801 (2006).
[CrossRef]

Sterr, U.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531-536 (2006).
[CrossRef]

H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736-738 (2006).
[CrossRef]

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Stoehr, H.

H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736-738 (2006).
[CrossRef]

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Tobar, M.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Uehara, N.

Vian, C.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Virdis, A.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Webster, S. A.

S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
[CrossRef]

Willke, B.

Wilpers, G.

C. W. Oates, Y. L. Coq, G. Wilpers, and L. Hollberg, “A compact high stability optical clock based on laser-cooled ca,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), (2006), pp. 346-349.

G. Wilpers, C. Oates, and L. Hollberg, “Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: results for a high-stability Ca40 optical frequency standard,” Appl. Phys. B 85, 31-44 (2006).
[CrossRef]

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

Wineland, D. J.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

Wolf, P.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Ye, J.

Zhang, Y.

Y. Zhang, K. Hayasaka, and K. Kasai, “Efficient noise suppression of an amplified diode-laser by optical filtering and resonant optical feedback,” Appl. Phys. B 86, 643-646 (2007).
[CrossRef]

Appl. Phys. B (4)

G. Wilpers, C. Oates, and L. Hollberg, “Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: results for a high-stability Ca40 optical frequency standard,” Appl. Phys. B 85, 31-44 (2006).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531-536 (2006).
[CrossRef]

Y. Zhang, K. Hayasaka, and K. Kasai, “Efficient noise suppression of an amplified diode-laser by optical filtering and resonant optical feedback,” Appl. Phys. B 86, 643-646 (2007).
[CrossRef]

Electron. Lett. (1)

P. Gallion, H. Nakajima, D. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 21, 626-628 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070-2074 (1986).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. E. Hines, J. R. Collinet, and J. G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. Microwave Theory Tech. MTT-16, 738-741 (1968).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Lett. A (1)

C. J. Bordé, “Atomic interferometry with internal state labelling,” Phys. Lett. A 140, 10-12 (1989).
[CrossRef]

Phys. Rev. A (3)

S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
[CrossRef]

C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005).
[CrossRef]

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef]

Phys. Rev. Lett. (5)

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181-184 (1991).
[CrossRef]

D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, “Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope,” Phys. Rev. Lett. 97, 240801 (2006).
[CrossRef]

H. Müller, S. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[CrossRef]

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[CrossRef]

Science (1)

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74-77 (2007).
[CrossRef]

Other (3)

G. Dick, “Local oscillator induced instabilities in trapped ion frequency standards,” in Proceedings of 19th Annual Precise Time and Time Interval Application and Planning Meeting (1987), pp.133-141.

C. W. Oates, Y. L. Coq, G. Wilpers, and L. Hollberg, “A compact high stability optical clock based on laser-cooled ca,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), (2006), pp. 346-349.

T. Nazarova, “Towards the quantum noise limit in Ramsey-Bordé atom interferometry,” Ph.D. thesis, Fakultät für Mathematik und Physik der Gottfried Wilhelm Leibniz Universität Hannover (2007), available online at http://www.tib.uni-hannover.de.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Symmetric Ramsey–Bordé atom interferometer and (b) corresponding sensitivity function g ( t ) . Only the paths that interfere are shown. The continuous lines denote the ground state, the dashed lines the excited state.

Fig. 2
Fig. 2

(a) Asymmetric Ramsey–Bordé atom interferometer and (b) corresponding sensitivity function g ( t ) . Only the two interfering atomic paths that correspond to the high-frequency (HF) and low-frequency (LF) recoil component are shown. The continuous lines denote the ground state, the dashed lines the excited state.

Fig. 3
Fig. 3

Frequency noise spectrum S ν ( f ) of the master lasers used in this experiment and the filtered low-noise slave laser. For comparison, the noise of the free-running laser 1 measured with an independent cavity is shown.

Fig. 4
Fig. 4

Setup of the filtered laser system with master laser, PDH lock to the high-finesse cavity, and amplification of the filtered light by an injection-locked slave laser diode.

Fig. 5
Fig. 5

Noise spectrum L ( f ) of the delayed self-heterodyne signal of the master laser, the injection locked slave laser, and detection noise floor (PD noise). The calculated spectra of the filtered light (gray curve) and of the injection locked laser (dashed curve) are both below the observed noise floor.

Fig. 6
Fig. 6

Contributions to the Dick effect as a function of the Fourier frequency f: (a) spectral density of laser fluctuations of the different lasers, (b) weighting factor G ( f ) G ( 0 ) 2 of the Dick effect, and (c) partial sum of all contributions to σ y for frequencies up to f for different resolutions of the four-pulse atom interferometer parametrized by the pulse separation time T.

Fig. 7
Fig. 7

Observed noise in a four-pulse Ramsey–Bordé atom interferometer with a pulse separation of T = 21 μ s at the top, center, and bottom of a Ramsey fringe obtained with the master laser (left), and with the slave laser, injection-locked by the filtered light (right).

Fig. 8
Fig. 8

Frequency noise as calculated from the observed noise as a function of the pulse separation time T for the master laser and the slave injection-locked by the filtered light. The curves show the calculated contributions from the Dick effect and from the detection noise as determined at the top and bottom of the Ramsey fringes in the present optimized setup.

Fig. 9
Fig. 9

Calculated frequency stability of the Ca frequency standard as a function of the pulse separation time T.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δ P ( t + T c ) = 0 T c g ( τ ) δ ν ( t + τ ) d τ ,
G ( f ) = 0 T c g ( t ) exp ( 2 π i f t ) d t .
s P 2 = ν 0 2 0 S y ( f ) G ( f ) 2 d f .
s P 2 = ν 0 2 0 f c 2 S y ( f ) G ( f ) 2 + ν 0 2 k = 1 0 f c 2 S y ( k f c + f ) G ( k f c + f ) 2 + ν 0 2 k = 1 0 f c 2 S y ( k f c f ) G ( k f c f ) 2 ,
s P 2 ν 0 2 0 f c 2 S y ( f ) G ( f ) 2 + ν 0 2 f c k = 1 S y ( k f c ) G ( k f c ) 2 .
σ y 2 ( τ ) = 1 τ 1 G ( 0 ) 2 k = 1 G ( k f c ) 2 S y ( k f c ) .
σ Φ 2 ( τ ) = 1 τ ( Φ P ) 2 k = 1 G ( k f c ) 2 S ν ( k f c ) ,
S ν c ( f ) = S ν 0 ( f ) 1 1 + ( f Δ f HWHM ) 2     .
S ν SL ( f ) = S ν ML ( f ) Δ f lock 2 Δ f lock 2 + f 2 + S ν free ( f ) f 2 Δ f lock 2 + f 2 ,
S φ b ( f ) = ( 2 π τ d ) 2 S ν ( f ) sin 2 ( π f τ d ) ( π f τ d ) 2     .
σ y ( τ ) = 1 π 1 Q 1 S N T c τ ,

Metrics