Abstract

A backward fluorescence collection method is employed in a noncollinear optical parametric amplification-gated femtosecond time-resolved fluorescence spectrometer to determine the detection limit of this recently developed technique. In this way the supercontinuum generation that interferes with the determination of the detection limit is completely excluded, and the achieved upper limit of the detectable photon number with the 150fs gating pulse is approximately 19.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
    [CrossRef]
  2. X. H. Chen, X. F. Han, Y. X. Weng, and J.-Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency up-conversion,” Appl. Phys. Lett. 89, 061127 (2006).
    [CrossRef]
  3. X. F. Han, X. H. Chen, Y. X. Weng, and J.-Y. Zhang, “Ultra-sensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
    [CrossRef]
  4. X. F. Han, Y. X. Weng, A. Pan, B. Zou, and J.-Y. Zhang, “Observation of delayed fluorescence in CdSxSe1−x nanobelts by femtosecond time-resolved fluorescence spectroscopy” Appl. Phys. Lett. 92, 032102 (2008).
    [CrossRef]
  5. P. Fita and C. Radzewicz, “Comment on 'Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification',” J. Opt. Soc. Am. B 25, xxx-xxx (2008).
    [CrossRef]
  6. S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732-734 (1967).
    [CrossRef]
  7. G. Cerullo and D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003).
    [CrossRef]
  8. R. L. Fork, C. V. Shank, C. Hirlimann, and R. Yen, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1-3 (1983).
    [CrossRef]
  9. X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
    [CrossRef]

2008 (3)

X. F. Han, Y. X. Weng, A. Pan, B. Zou, and J.-Y. Zhang, “Observation of delayed fluorescence in CdSxSe1−x nanobelts by femtosecond time-resolved fluorescence spectroscopy” Appl. Phys. Lett. 92, 032102 (2008).
[CrossRef]

P. Fita and C. Radzewicz, “Comment on 'Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification',” J. Opt. Soc. Am. B 25, xxx-xxx (2008).
[CrossRef]

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

2007 (1)

2006 (1)

X. H. Chen, X. F. Han, Y. X. Weng, and J.-Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency up-conversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

2005 (1)

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

2003 (1)

G. Cerullo and D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

1983 (1)

1967 (1)

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732-734 (1967).
[CrossRef]

Byer, R. L.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732-734 (1967).
[CrossRef]

Cerullo, G.

G. Cerullo and D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Chen, X. H.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

X. F. Han, X. H. Chen, Y. X. Weng, and J.-Y. Zhang, “Ultra-sensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J.-Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency up-conversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

Fita, P.

P. Fita and C. Radzewicz, “Comment on 'Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification',” J. Opt. Soc. Am. B 25, xxx-xxx (2008).
[CrossRef]

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

Fork, R. L.

Han, X. F.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

X. F. Han, Y. X. Weng, A. Pan, B. Zou, and J.-Y. Zhang, “Observation of delayed fluorescence in CdSxSe1−x nanobelts by femtosecond time-resolved fluorescence spectroscopy” Appl. Phys. Lett. 92, 032102 (2008).
[CrossRef]

X. F. Han, X. H. Chen, Y. X. Weng, and J.-Y. Zhang, “Ultra-sensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J.-Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency up-conversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

Harris, S. E.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732-734 (1967).
[CrossRef]

Hirlimann, C.

Luo, K. H.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

Oshman, M. K.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732-734 (1967).
[CrossRef]

Pan, A.

X. F. Han, Y. X. Weng, A. Pan, B. Zou, and J.-Y. Zhang, “Observation of delayed fluorescence in CdSxSe1−x nanobelts by femtosecond time-resolved fluorescence spectroscopy” Appl. Phys. Lett. 92, 032102 (2008).
[CrossRef]

Radzewicz, C.

P. Fita and C. Radzewicz, “Comment on 'Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification',” J. Opt. Soc. Am. B 25, xxx-xxx (2008).
[CrossRef]

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

Shank, C. V.

Silvestri, D.

G. Cerullo and D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Stepanenko, Y.

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

Wang, R.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

Weng, Y. X.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

X. F. Han, Y. X. Weng, A. Pan, B. Zou, and J.-Y. Zhang, “Observation of delayed fluorescence in CdSxSe1−x nanobelts by femtosecond time-resolved fluorescence spectroscopy” Appl. Phys. Lett. 92, 032102 (2008).
[CrossRef]

X. F. Han, X. H. Chen, Y. X. Weng, and J.-Y. Zhang, “Ultra-sensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J.-Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency up-conversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

Wu, L. A.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

Yen, R.

Zhang, J.-Y.

X. F. Han, Y. X. Weng, A. Pan, B. Zou, and J.-Y. Zhang, “Observation of delayed fluorescence in CdSxSe1−x nanobelts by femtosecond time-resolved fluorescence spectroscopy” Appl. Phys. Lett. 92, 032102 (2008).
[CrossRef]

X. F. Han, X. H. Chen, Y. X. Weng, and J.-Y. Zhang, “Ultra-sensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J.-Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency up-conversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

Zhao, J.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

Zou, B.

X. F. Han, Y. X. Weng, A. Pan, B. Zou, and J.-Y. Zhang, “Observation of delayed fluorescence in CdSxSe1−x nanobelts by femtosecond time-resolved fluorescence spectroscopy” Appl. Phys. Lett. 92, 032102 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

X. F. Han, Y. X. Weng, A. Pan, B. Zou, and J.-Y. Zhang, “Observation of delayed fluorescence in CdSxSe1−x nanobelts by femtosecond time-resolved fluorescence spectroscopy” Appl. Phys. Lett. 92, 032102 (2008).
[CrossRef]

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J.-Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency up-conversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

X. F. Han, X. H. Chen, Y. X. Weng, and J.-Y. Zhang, “Ultra-sensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
[CrossRef]

P. Fita and C. Radzewicz, “Comment on 'Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification',” J. Opt. Soc. Am. B 25, xxx-xxx (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732-734 (1967).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Cerullo and D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Decay curve of fluorescence obtained by attenuating the seeder by 1000 times, which corresponds to a seeding level of 30 photons per pulse; the curve was deleted from our previous paper in the last revision. (b) Decay curve of fluorescence obtained by attenuating the seeder by 2000 times, which corresponds to a seeding level of 15 photons per pulse. This curve is Fig. 6 in [3].

Fig. 2
Fig. 2

Schematic diagram for backward collection of fluorescence in a NOPA gated time-resolved fluorescence spectrometer. BS, beam splitter; L1–L5, lenses; RM, reflection mirror; PD, photodiode; SHG, BBO crystal for second-harmonic generation. The setup for forward fluorescence measurement is the same as that used in [3].

Fig. 3
Fig. 3

Normalized fluorescence decay curves of Rhodamine 6G ( 5 × 10 3 M ) excited at 400 nm and probed at 570 nm by NOPA gated fluorescence amplification at varied attenuation levels of the seeding beam in a forward fluorescence collection setup.

Fig. 4
Fig. 4

Normalized fluorescence decay curves of Rhodamine 6G ( 5 × 10 3 M ) excited at 400 nm and probed at 570 nm by NOPA gated fluorescence amplification at an attenuation level of 0.1%. The curve having a much higher S/N ratio at an attenuation of 1 100 is plotted for comparison. (a) Whole temporal window, (b) expanded view.

Fig. 5
Fig. 5

Normalized fluorescence decay curves of Rhodamine 6G ( 5 × 10 3 M ) excited at 400 nm and probed at 570 nm by NOPA gated fluorescence amplification at varied attenuation levels of the seeding beam as indicated in a backward fluorescence setup.

Fig. 6
Fig. 6

Normalized fluorescence decay curves of Rhodamine 6G ( 5 × 10 3 M ) probed at 570 nm by NOPA gated fluorescence amplification at seeding attenuation levels of 1 100 and 1 2000 .

Fig. 7
Fig. 7

Rising phase of the kinetic traces of the fluorescence of Rhodamine 6G (the solid curve is the forward fluorescence collection amplification, and the dashed curve is the backward fluorescence collection) probed at 570 nm and a pump power of 40 μ J /pulse.

Metrics