Abstract

Cloaking structures and invisibility-devoted media are receiving much attention. Although the main efforts are devoted to the realization of 3D structures, still many interesting features can arise from the development of monodirectional 2D cloaking structures. We discuss a structure designed by using a numerical method based on geometrical optics that is able to hide any object smaller than the cloaking envelope but much bigger than the wavelength of the electromagnetic field, using normal materials. Some numerical examples are presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  3. U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8, 1-16 (2006).
    [CrossRef]
  4. U. Leonardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 1-18 (2006).
    [CrossRef]
  5. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
    [CrossRef] [PubMed]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  7. A. Alu and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express 15, 7578-7590 (2007).
    [CrossRef] [PubMed]
  8. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224-227 (2007).
    [CrossRef]
  9. B. Kantè, A. de Lustrac, J.-M. Lourtioz, and S. N. Burokur, “Infrared cloaking based on the electric response of split ring resonators,” Opt. Express 16, 9191-9198 (2008).
    [CrossRef] [PubMed]
  10. T. Ochiai, U. Leonardt, and J. C. Nacher, “A novel design of dielectric perfect invisibility devices,” J. Math. Phys. 49, 032903 (2008).
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

2008

T. Ochiai, U. Leonardt, and J. C. Nacher, “A novel design of dielectric perfect invisibility devices,” J. Math. Phys. 49, 032903 (2008).
[CrossRef]

B. Kantè, A. de Lustrac, J.-M. Lourtioz, and S. N. Burokur, “Infrared cloaking based on the electric response of split ring resonators,” Opt. Express 16, 9191-9198 (2008).
[CrossRef] [PubMed]

2007

A. Alu and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express 15, 7578-7590 (2007).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224-227 (2007).
[CrossRef]

2006

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8, 1-16 (2006).
[CrossRef]

U. Leonardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 1-18 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

1999

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Alu, A.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Burokur, S. N.

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224-227 (2007).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224-227 (2007).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

de Lustrac, A.

Engheta, N.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kantè, B.

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224-227 (2007).
[CrossRef]

Leonardt, U.

T. Ochiai, U. Leonardt, and J. C. Nacher, “A novel design of dielectric perfect invisibility devices,” J. Math. Phys. 49, 032903 (2008).
[CrossRef]

U. Leonardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 1-18 (2006).
[CrossRef]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8, 1-16 (2006).
[CrossRef]

Lourtioz, J.-M.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Nacher, J. C.

T. Ochiai, U. Leonardt, and J. C. Nacher, “A novel design of dielectric perfect invisibility devices,” J. Math. Phys. 49, 032903 (2008).
[CrossRef]

Ochiai, T.

T. Ochiai, U. Leonardt, and J. C. Nacher, “A novel design of dielectric perfect invisibility devices,” J. Math. Phys. 49, 032903 (2008).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

Philbin, T. G.

U. Leonardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 1-18 (2006).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224-227 (2007).
[CrossRef]

Smith, D. R.

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

J. Math. Phys.

T. Ochiai, U. Leonardt, and J. C. Nacher, “A novel design of dielectric perfect invisibility devices,” J. Math. Phys. 49, 032903 (2008).
[CrossRef]

Nat. Photonics

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224-227 (2007).
[CrossRef]

New J. Phys.

U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8, 1-16 (2006).
[CrossRef]

U. Leonardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 1-18 (2006).
[CrossRef]

Opt. Express

Science

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Shape of the ray path to generate hidden regions.

Fig. 2
Fig. 2

Analytical shape of the chosen ray path.

Fig. 3
Fig. 3

Calculated refractive index, (a) prospective view, (b) top view.

Fig. 4
Fig. 4

Top view of refractive index. The system has two cavities where it is possible to hide objects.

Fig. 5
Fig. 5

Uniform spatial distribution of the refractive index in presence of the items that have to be hidden. (Six cylinders inside the cavity with n = 2.6 .)

Fig. 6
Fig. 6

(a), (b) Modulus and (c), (d) real part of the electric field for a wave propagating in a free space with uniform refractive index n = 2 . Electric field modulus for λ = ( a ) 20 and (b) 17 μ m ; real part of electric field for λ = ( c ) 20 and (d) 17 μ m .

Fig. 7
Fig. 7

(a) Modulus of the electric field for a wave propagating in presence of the sole items with uniform background refractive index n = 2 , when λ = 17 μ m . (b) Plot of the real part of electric field for a wave propagating in the same conditions of (a).

Fig. 8
Fig. 8

Spatial distribution of the refractive index in presence of both the items and the cloaking structure.

Fig. 9
Fig. 9

(a) Modulus and (b) real part of the electric field for λ = 20 μ m when cylinders are in the structure.

Fig. 10
Fig. 10

(a) Modulus and (b) real part of the electric field for λ = 17 μ m when cylinders are in the structure.

Metrics