Abstract

Recently, a new approach to cool optically pumped solid-state lasers by converting the lattice heat into radiation was presented [Laser Phys. 18, 430 (2008) ]. It relies on a stimulated radiative process occurring in the laser host material. The internal heat gets partially converted through a four-wave mixing process into a radiating optical field. By adopting a Lorentz oscillator model for the field-atom interaction in the laser host, we identified a shortcut to treat the heating and cooling mechanisms going together with the Stokes and anti-Stokes radiation involved in the four-wave mixing. An energy balance between these mechanisms is derived from the differential equation for the material excitation. This balance will ultimately determine the crystal steady-state temperature. This analysis is the first step towards practical engineering implementations of the optical cooling principle for important new laser systems such as the silicon Raman laser and the Cr-ZnSe laser for the mid-IR.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Mungan, “Laser cooling of solids,” in Advances in Atomic, Molecular and Optical Physics, Vol. 40 (Academic, 1999), H.W.Bederson, ed., pp. 161-228.
  2. C. Mungan, “Radiation thermodynamics with applications to lasing and fluorescent cooling,” Am. J. Phys. 73, 315-322 (2005).
    [Crossref]
  3. S. Adrianov, “Experimental and theoretical studies of laser cooling of condensed media,” Opt. Technol. 69, 864-870 (2002).
    [Crossref]
  4. J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213-3217 (2000).
    [Crossref]
  5. A. Rayner, N. Heckenberg, H. Rubinsztein-Dunlop, “Condensed-phase optical refrigeration,” J. Opt. Soc. Am. B 20, 1037-1053 (2003).
    [Crossref]
  6. X. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
    [Crossref]
  7. S. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115-122 (1999).
    [Crossref]
  8. P. Muys, “Stimulated radiative laser cooling,” Laser Phys. 18, 430-433 (2008).
    [Crossref]
  9. N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
    [Crossref] [PubMed]
  10. M. Raybaut, A. Godard, R. Haidar, M. Lefebvre, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Generation of mid-infrared radiation by self-difference frequency mixing in chromium-doped zinc selenide,” Opt. Lett. 31, 220-222 (2006).
    [Crossref] [PubMed]
  11. E. Garmire, F. Pandarese, and C. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160-163 (1963).
    [Crossref]
  12. R. Boyd, Nonlinear Optics (Academic, 2003).
  13. B. Jalali, “A cooler Raman laser,” Nat. Photonics 1, 691-692 (2007).
    [Crossref]
  14. S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition-metal doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
    [Crossref]
  15. A. Zheltikov, “Phase-matched four-wave mixing of guided and leaky modes in an optical fiber,” Opt. Lett. 33, 839-841 (2008).
    [Crossref] [PubMed]

2008 (2)

2007 (3)

B. Jalali, “A cooler Raman laser,” Nat. Photonics 1, 691-692 (2007).
[Crossref]

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition-metal doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[Crossref]

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (1)

C. Mungan, “Radiation thermodynamics with applications to lasing and fluorescent cooling,” Am. J. Phys. 73, 315-322 (2005).
[Crossref]

2003 (2)

2002 (1)

S. Adrianov, “Experimental and theoretical studies of laser cooling of condensed media,” Opt. Technol. 69, 864-870 (2002).
[Crossref]

2000 (1)

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213-3217 (2000).
[Crossref]

1999 (2)

C. Mungan, “Laser cooling of solids,” in Advances in Atomic, Molecular and Optical Physics, Vol. 40 (Academic, 1999), H.W.Bederson, ed., pp. 161-228.

S. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115-122 (1999).
[Crossref]

1963 (1)

E. Garmire, F. Pandarese, and C. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160-163 (1963).
[Crossref]

Adam, J. L.

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213-3217 (2000).
[Crossref]

Adrianov, S.

S. Adrianov, “Experimental and theoretical studies of laser cooling of condensed media,” Opt. Technol. 69, 864-870 (2002).
[Crossref]

Balda, R.

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213-3217 (2000).
[Crossref]

Bowman, S.

S. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115-122 (1999).
[Crossref]

Boyd, R.

R. Boyd, Nonlinear Optics (Academic, 2003).

Debaes, C.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[Crossref] [PubMed]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition-metal doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[Crossref]

Fernandez, J.

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213-3217 (2000).
[Crossref]

Garcia, A. J.

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213-3217 (2000).
[Crossref]

Garmire, E.

E. Garmire, F. Pandarese, and C. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160-163 (1963).
[Crossref]

Godard, A.

Haidar, R.

Heckenberg, N.

Jalali, B.

B. Jalali, “A cooler Raman laser,” Nat. Photonics 1, 691-692 (2007).
[Crossref]

Kaviany, M.

X. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[Crossref]

Kupecek, Ph.

Lefebvre, M.

Lemasson, Ph.

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition-metal doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[Crossref]

Mendioroz, A.

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213-3217 (2000).
[Crossref]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition-metal doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[Crossref]

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition-metal doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[Crossref]

Mungan, C.

C. Mungan, “Radiation thermodynamics with applications to lasing and fluorescent cooling,” Am. J. Phys. 73, 315-322 (2005).
[Crossref]

C. Mungan, “Laser cooling of solids,” in Advances in Atomic, Molecular and Optical Physics, Vol. 40 (Academic, 1999), H.W.Bederson, ed., pp. 161-228.

Muys, P.

P. Muys, “Stimulated radiative laser cooling,” Laser Phys. 18, 430-433 (2008).
[Crossref]

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[Crossref] [PubMed]

Pandarese, F.

E. Garmire, F. Pandarese, and C. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160-163 (1963).
[Crossref]

Raybaut, M.

Rayner, A.

Rosencher, E.

Ruan, X.

X. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[Crossref]

Rubinsztein-Dunlop, H.

Thienpont, H.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[Crossref] [PubMed]

Townes, C.

E. Garmire, F. Pandarese, and C. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160-163 (1963).
[Crossref]

Vermeulen, N.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[Crossref] [PubMed]

Zheltikov, A.

Am. J. Phys. (1)

C. Mungan, “Radiation thermodynamics with applications to lasing and fluorescent cooling,” Am. J. Phys. 73, 315-322 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115-122 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition-metal doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

P. Muys, “Stimulated radiative laser cooling,” Laser Phys. 18, 430-433 (2008).
[Crossref]

Nat. Photonics (1)

B. Jalali, “A cooler Raman laser,” Nat. Photonics 1, 691-692 (2007).
[Crossref]

Opt. Lett. (2)

Opt. Technol. (1)

S. Adrianov, “Experimental and theoretical studies of laser cooling of condensed media,” Opt. Technol. 69, 864-870 (2002).
[Crossref]

Phys. Rev. B (2)

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213-3217 (2000).
[Crossref]

X. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[Crossref]

Phys. Rev. Lett. (2)

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[Crossref] [PubMed]

E. Garmire, F. Pandarese, and C. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160-163 (1963).
[Crossref]

Other (2)

R. Boyd, Nonlinear Optics (Academic, 2003).

C. Mungan, “Laser cooling of solids,” in Advances in Atomic, Molecular and Optical Physics, Vol. 40 (Academic, 1999), H.W.Bederson, ed., pp. 161-228.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Spontaneous fluorescence cooling. (b) Stimulated radiative cooling.

Fig. 2
Fig. 2

Dopant–host configuration.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

η C = ω a ω p ω p = ω s ω p ω p .
η HM = P a ω a P S ω s .
η HM = P a P S 1 η C 1 + η C .
d A s d z = α s A s + κ s A a * exp ( i Δ k z ) ,
d A a * d z = α a * A a * + κ a * A s exp ( i Δ k z ) .
d 2 q ̃ d t 2 + 2 γ d q ̃ d t + ω v 2 = 1 2 m ( d α d q ) 0 E ̃ 2 ( z , t ) .
E ̃ ( z , t ) = A p exp [ i ( k p z ω t ) ] + A s exp [ i ( k s z ω t ) ] + A a exp [ i ( k a z ω t ) ] + c.c.
α a = α s * N ,
κ s = α s e 2 i ϕ p ,
κ a = α s * N e 2 i ϕ p ,
N = n s n a ω a ω s ,
q ̃ ( z , t ) = q ( Ω ) exp [ i ( K z Ω t ) ] + c.c. ,
q ( Ω ) = 1 m ( α q ) 0 A p A s * + A a A p * ω v 2 Ω 2 2 i Ω γ .
q ̃ ( Ω ) A p A s * + A a A p * = A p [ A s exp { i ( ϕ p ϕ s ) } + A a exp { i ( ϕ a ϕ p ) } ] .
ϕ p ϕ s ϕ = ϕ a ϕ p + π ,
q ̃ ( Ω ) A s e i ϕ + A a e i ( ϕ π ) = e i ϕ ( A s A a ) .
E = M ω v 2 q ̃ 2 = C v kT .
κ s κ a * = α s α a * = α s 2 N .

Metrics