Abstract

We investigate the beam reflection mechanism in a bounded space, which is applied in the practical total-internal-reflection (TIR) optical waveguide switch. Due to the confinement of the waveguide, the beam reflection within the TIR switch is completely different from that in free space. Its essence is the quasi-degeneracy between the even and the odd modes in the reflection region. Since different modes require different refractive index decreases to reach the quasi-degenerate state, we reduce the electrode power by controlling the mode excitation in the reflection region. Several guidelines are proposed for designing the TIR switch.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Tsai, B. Kim, and F. R. Elakkari, “Optical channel waveguides switch and coupler using total internal reflection,” IEEE J. Quantum Electron. 14, 513-517 (1978).
    [CrossRef]
  2. C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett. 9, 1113-1115 (1997).
    [CrossRef]
  3. K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).
  4. Y. Gao, X. Liu, G. Li, and E. Liu, “Si1−xGex/Si asymmetric 2×2 electro-optical switch of total internal reflection type,” Appl. Phys. Lett. 67, 3379-3380 (1995).
    [CrossRef]
  5. B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999).
    [CrossRef]
  6. F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06to1.55μm,” IEEE J. Quantum Electron. 25, 1677-1681 (1989).
    [CrossRef]
  7. A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
    [CrossRef]
  8. J. Y. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947-2949 (2002).
    [CrossRef]
  9. X. L. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Polarization-independent all-wave polymer-based TIR thermooptic switch,” J. Lightwave Technol. 24, 1558-1565 (2006).
    [CrossRef]
  10. S. K. Sheem, “Total internal reflection integrated-optics switch: a theoretical evalution,” Appl. Opt. 17, 3679-3687 (1978).
    [CrossRef] [PubMed]
  11. J. Nayyer, Y. Suematsu, and K. Shimomura, “Analysis of reflection-type optical switches with intersecting waveguides,” J. Lightwave Technol. 6, 1146-1152 (1988).
    [CrossRef]
  12. K. Shimomura, Y. Suematsu, and S. Arai, “Analysis of semiconductor intersectional waveguide optical switch modular,” IEEE J. Quantum Electron. 26, 883-892 (1990).
    [CrossRef]
  13. H. Yu, X. Q. Jiang, J. Y. Yang, W. Qi, and M. H. Wang, “Analytical model for the grazing reflection of a narrow beam,” Opt. Lett. 31, 2747-2749 (2006).
    [CrossRef] [PubMed]
  14. H. H. Hanza, J. Nayyer, and S. S. Naini, “Extinction ratios and scattering losses of optical intersecting-waveguide switches with curved electrodes,” J. Lightwave Technol. 12, 1475-1481 (1994).
  15. P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and model technique for the analysis of integrated optics structures: the radiation spectrum method,” Opt. Commun. 140, 128-145 (1997).
    [CrossRef]
  16. H. Ding, P. Gerard, and P. Benech, “Radiation modes of lossless multilayer dielectric waveguides,” IEEE J. Quantum Electron. 31, 411-416 (1995).
    [CrossRef]
  17. S. L. Lee, S. L. Mui, and L. A. Coldren, “Explict formulas of normalized radiation modes in multilayer waveguides,” J. Lightwave Technol. 12, 2073-2079 (1994).
  18. V. Ramaswamy and P. G. Suchoski, “Power loss at a step discontinuity in an asymmetrical dielectric slab waveguide,” J. Opt. Soc. Am. A 1, 754-759 (1984).
    [CrossRef]
  19. M. Oz and R. R. Krchnavek, “Power loss analysis at a step discontinuity of a multimode optical waveguide,” J. Lightwave Technol. 16, 2451-2457 (1998).
    [CrossRef]
  20. A. Neyer, “Operation mechanism of electrooptic multimode X-switches,” IEEE J. Quantum Electron. 20, 999-1002 (1984).
    [CrossRef]
  21. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997), Chap. 13.

2006 (2)

2005 (1)

A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
[CrossRef]

2002 (1)

J. Y. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947-2949 (2002).
[CrossRef]

1999 (1)

B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999).
[CrossRef]

1998 (1)

1997 (3)

A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997), Chap. 13.

C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett. 9, 1113-1115 (1997).
[CrossRef]

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and model technique for the analysis of integrated optics structures: the radiation spectrum method,” Opt. Commun. 140, 128-145 (1997).
[CrossRef]

1995 (2)

H. Ding, P. Gerard, and P. Benech, “Radiation modes of lossless multilayer dielectric waveguides,” IEEE J. Quantum Electron. 31, 411-416 (1995).
[CrossRef]

Y. Gao, X. Liu, G. Li, and E. Liu, “Si1−xGex/Si asymmetric 2×2 electro-optical switch of total internal reflection type,” Appl. Phys. Lett. 67, 3379-3380 (1995).
[CrossRef]

1994 (3)

K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).

S. L. Lee, S. L. Mui, and L. A. Coldren, “Explict formulas of normalized radiation modes in multilayer waveguides,” J. Lightwave Technol. 12, 2073-2079 (1994).

H. H. Hanza, J. Nayyer, and S. S. Naini, “Extinction ratios and scattering losses of optical intersecting-waveguide switches with curved electrodes,” J. Lightwave Technol. 12, 1475-1481 (1994).

1990 (1)

K. Shimomura, Y. Suematsu, and S. Arai, “Analysis of semiconductor intersectional waveguide optical switch modular,” IEEE J. Quantum Electron. 26, 883-892 (1990).
[CrossRef]

1989 (1)

F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06to1.55μm,” IEEE J. Quantum Electron. 25, 1677-1681 (1989).
[CrossRef]

1988 (1)

J. Nayyer, Y. Suematsu, and K. Shimomura, “Analysis of reflection-type optical switches with intersecting waveguides,” J. Lightwave Technol. 6, 1146-1152 (1988).
[CrossRef]

1984 (2)

V. Ramaswamy and P. G. Suchoski, “Power loss at a step discontinuity in an asymmetrical dielectric slab waveguide,” J. Opt. Soc. Am. A 1, 754-759 (1984).
[CrossRef]

A. Neyer, “Operation mechanism of electrooptic multimode X-switches,” IEEE J. Quantum Electron. 20, 999-1002 (1984).
[CrossRef]

1978 (2)

S. K. Sheem, “Total internal reflection integrated-optics switch: a theoretical evalution,” Appl. Opt. 17, 3679-3687 (1978).
[CrossRef] [PubMed]

C. S. Tsai, B. Kim, and F. R. Elakkari, “Optical channel waveguides switch and coupler using total internal reflection,” IEEE J. Quantum Electron. 14, 513-517 (1978).
[CrossRef]

Arai, S.

K. Shimomura, Y. Suematsu, and S. Arai, “Analysis of semiconductor intersectional waveguide optical switch modular,” IEEE J. Quantum Electron. 26, 883-892 (1990).
[CrossRef]

Benech, P.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and model technique for the analysis of integrated optics structures: the radiation spectrum method,” Opt. Commun. 140, 128-145 (1997).
[CrossRef]

H. Ding, P. Gerard, and P. Benech, “Radiation modes of lossless multilayer dielectric waveguides,” IEEE J. Quantum Electron. 31, 411-416 (1995).
[CrossRef]

Chan, C. H.

A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
[CrossRef]

Chan, H. P.

A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
[CrossRef]

Chan, K. T.

A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
[CrossRef]

Chan, W. C.

A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
[CrossRef]

Chen, A. H.

C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett. 9, 1113-1115 (1997).
[CrossRef]

Chen, M. Y.

Chen, R. T.

X. L. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Polarization-independent all-wave polymer-based TIR thermooptic switch,” J. Lightwave Technol. 24, 1558-1565 (2006).
[CrossRef]

J. Y. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947-2949 (2002).
[CrossRef]

Coldren, L. A.

S. L. Lee, S. L. Mui, and L. A. Coldren, “Explict formulas of normalized radiation modes in multilayer waveguides,” J. Lightwave Technol. 12, 2073-2079 (1994).

Demokan, M. S.

A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
[CrossRef]

Ding, H.

H. Ding, P. Gerard, and P. Benech, “Radiation modes of lossless multilayer dielectric waveguides,” IEEE J. Quantum Electron. 31, 411-416 (1995).
[CrossRef]

Elakkari, F. R.

C. S. Tsai, B. Kim, and F. R. Elakkari, “Optical channel waveguides switch and coupler using total internal reflection,” IEEE J. Quantum Electron. 14, 513-517 (1978).
[CrossRef]

Gao, Y.

Y. Gao, X. Liu, G. Li, and E. Liu, “Si1−xGex/Si asymmetric 2×2 electro-optical switch of total internal reflection type,” Appl. Phys. Lett. 67, 3379-3380 (1995).
[CrossRef]

Gerard, P.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and model technique for the analysis of integrated optics structures: the radiation spectrum method,” Opt. Commun. 140, 128-145 (1997).
[CrossRef]

H. Ding, P. Gerard, and P. Benech, “Radiation modes of lossless multilayer dielectric waveguides,” IEEE J. Quantum Electron. 31, 411-416 (1995).
[CrossRef]

Hanza, H. H.

H. H. Hanza, J. Nayyer, and S. S. Naini, “Extinction ratios and scattering losses of optical intersecting-waveguide switches with curved electrodes,” J. Lightwave Technol. 12, 1475-1481 (1994).

Howley, B.

Ito, F.

F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06to1.55μm,” IEEE J. Quantum Electron. 25, 1677-1681 (1989).
[CrossRef]

Jiang, X. Q.

Jiang, Z.

B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999).
[CrossRef]

Khalil, D.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and model technique for the analysis of integrated optics structures: the radiation spectrum method,” Opt. Commun. 140, 128-145 (1997).
[CrossRef]

Kim, B.

C. S. Tsai, B. Kim, and F. R. Elakkari, “Optical channel waveguides switch and coupler using total internal reflection,” IEEE J. Quantum Electron. 14, 513-517 (1978).
[CrossRef]

Kim, H. M.

K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).

Krchnavek, R. R.

Kwok, H. S.

A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
[CrossRef]

Lee, K.

K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).

Lee, S. L.

S. L. Lee, S. L. Mui, and L. A. Coldren, “Explict formulas of normalized radiation modes in multilayer waveguides,” J. Lightwave Technol. 12, 2073-2079 (1994).

Li, B.

B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999).
[CrossRef]

Li, G.

B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999).
[CrossRef]

Y. Gao, X. Liu, G. Li, and E. Liu, “Si1−xGex/Si asymmetric 2×2 electro-optical switch of total internal reflection type,” Appl. Phys. Lett. 67, 3379-3380 (1995).
[CrossRef]

Li, G. Z.

C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett. 9, 1113-1115 (1997).
[CrossRef]

Liu, E.

B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999).
[CrossRef]

Y. Gao, X. Liu, G. Li, and E. Liu, “Si1−xGex/Si asymmetric 2×2 electro-optical switch of total internal reflection type,” Appl. Phys. Lett. 67, 3379-3380 (1995).
[CrossRef]

Liu, E. K.

C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett. 9, 1113-1115 (1997).
[CrossRef]

Liu, X.

Y. Gao, X. Liu, G. Li, and E. Liu, “Si1−xGex/Si asymmetric 2×2 electro-optical switch of total internal reflection type,” Appl. Phys. Lett. 67, 3379-3380 (1995).
[CrossRef]

Matsuura, M.

F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06to1.55μm,” IEEE J. Quantum Electron. 25, 1677-1681 (1989).
[CrossRef]

Mui, S. L.

S. L. Lee, S. L. Mui, and L. A. Coldren, “Explict formulas of normalized radiation modes in multilayer waveguides,” J. Lightwave Technol. 12, 2073-2079 (1994).

Naini, S. S.

H. H. Hanza, J. Nayyer, and S. S. Naini, “Extinction ratios and scattering losses of optical intersecting-waveguide switches with curved electrodes,” J. Lightwave Technol. 12, 1475-1481 (1994).

Nayyer, J.

H. H. Hanza, J. Nayyer, and S. S. Naini, “Extinction ratios and scattering losses of optical intersecting-waveguide switches with curved electrodes,” J. Lightwave Technol. 12, 1475-1481 (1994).

J. Nayyer, Y. Suematsu, and K. Shimomura, “Analysis of reflection-type optical switches with intersecting waveguides,” J. Lightwave Technol. 6, 1146-1152 (1988).
[CrossRef]

Neyer, A.

A. Neyer, “Operation mechanism of electrooptic multimode X-switches,” IEEE J. Quantum Electron. 20, 999-1002 (1984).
[CrossRef]

Oh, D. K.

K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).

Oh, K. R.

K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).

Oz, M.

Park, H. M.

K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).

Park, K. S.

K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).

Pei, C.

B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999).
[CrossRef]

Qi, W.

Ramaswamy, V.

Rimet, R.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and model technique for the analysis of integrated optics structures: the radiation spectrum method,” Opt. Commun. 140, 128-145 (1997).
[CrossRef]

Sheem, S. K.

Shimomura, K.

K. Shimomura, Y. Suematsu, and S. Arai, “Analysis of semiconductor intersectional waveguide optical switch modular,” IEEE J. Quantum Electron. 26, 883-892 (1990).
[CrossRef]

J. Nayyer, Y. Suematsu, and K. Shimomura, “Analysis of reflection-type optical switches with intersecting waveguides,” J. Lightwave Technol. 6, 1146-1152 (1988).
[CrossRef]

Suchoski, P. G.

Suematsu, Y.

K. Shimomura, Y. Suematsu, and S. Arai, “Analysis of semiconductor intersectional waveguide optical switch modular,” IEEE J. Quantum Electron. 26, 883-892 (1990).
[CrossRef]

J. Nayyer, Y. Suematsu, and K. Shimomura, “Analysis of reflection-type optical switches with intersecting waveguides,” J. Lightwave Technol. 6, 1146-1152 (1988).
[CrossRef]

Tanifuji, T.

F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06to1.55μm,” IEEE J. Quantum Electron. 25, 1677-1681 (1989).
[CrossRef]

Tedjini, S.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and model technique for the analysis of integrated optics structures: the radiation spectrum method,” Opt. Commun. 140, 128-145 (1997).
[CrossRef]

Tsai, C. S.

C. S. Tsai, B. Kim, and F. R. Elakkari, “Optical channel waveguides switch and coupler using total internal reflection,” IEEE J. Quantum Electron. 14, 513-517 (1978).
[CrossRef]

Wang, M. H.

Wang, X.

B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999).
[CrossRef]

Wang, X. L.

Yang, J. Y.

H. Yu, X. Q. Jiang, J. Y. Yang, W. Qi, and M. H. Wang, “Analytical model for the grazing reflection of a narrow beam,” Opt. Lett. 31, 2747-2749 (2006).
[CrossRef] [PubMed]

J. Y. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947-2949 (2002).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997), Chap. 13.

Yu, H.

Zhang, A.

A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
[CrossRef]

Zhao, C. Z.

C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett. 9, 1113-1115 (1997).
[CrossRef]

Zhou, Q.

J. Y. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947-2949 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005).
[CrossRef]

J. Y. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947-2949 (2002).
[CrossRef]

Y. Gao, X. Liu, G. Li, and E. Liu, “Si1−xGex/Si asymmetric 2×2 electro-optical switch of total internal reflection type,” Appl. Phys. Lett. 67, 3379-3380 (1995).
[CrossRef]

B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999).
[CrossRef]

IEEE J. Quantum Electron. (5)

F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06to1.55μm,” IEEE J. Quantum Electron. 25, 1677-1681 (1989).
[CrossRef]

C. S. Tsai, B. Kim, and F. R. Elakkari, “Optical channel waveguides switch and coupler using total internal reflection,” IEEE J. Quantum Electron. 14, 513-517 (1978).
[CrossRef]

K. Shimomura, Y. Suematsu, and S. Arai, “Analysis of semiconductor intersectional waveguide optical switch modular,” IEEE J. Quantum Electron. 26, 883-892 (1990).
[CrossRef]

H. Ding, P. Gerard, and P. Benech, “Radiation modes of lossless multilayer dielectric waveguides,” IEEE J. Quantum Electron. 31, 411-416 (1995).
[CrossRef]

A. Neyer, “Operation mechanism of electrooptic multimode X-switches,” IEEE J. Quantum Electron. 20, 999-1002 (1984).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett. 9, 1113-1115 (1997).
[CrossRef]

K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).

J. Lightwave Technol. (5)

X. L. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Polarization-independent all-wave polymer-based TIR thermooptic switch,” J. Lightwave Technol. 24, 1558-1565 (2006).
[CrossRef]

J. Nayyer, Y. Suematsu, and K. Shimomura, “Analysis of reflection-type optical switches with intersecting waveguides,” J. Lightwave Technol. 6, 1146-1152 (1988).
[CrossRef]

S. L. Lee, S. L. Mui, and L. A. Coldren, “Explict formulas of normalized radiation modes in multilayer waveguides,” J. Lightwave Technol. 12, 2073-2079 (1994).

H. H. Hanza, J. Nayyer, and S. S. Naini, “Extinction ratios and scattering losses of optical intersecting-waveguide switches with curved electrodes,” J. Lightwave Technol. 12, 1475-1481 (1994).

M. Oz and R. R. Krchnavek, “Power loss analysis at a step discontinuity of a multimode optical waveguide,” J. Lightwave Technol. 16, 2451-2457 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and model technique for the analysis of integrated optics structures: the radiation spectrum method,” Opt. Commun. 140, 128-145 (1997).
[CrossRef]

Opt. Lett. (1)

Other (1)

A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997), Chap. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the practical TIR switch.

Fig. 2
Fig. 2

Field distributions at the output plane z 2 = H for the crossing and the bar states. The field profiles are presented after the amplitude normalization. The parameters in calculation are n 2 = 3.37 , n 3 = 3.35 , λ = 1.55 μ m , w = 16 μ m , a = 2 μ m , θ = 4 , b = a + w cos θ , H = ( b + a ) tan θ , and Δ n = n 2 n 1 .

Fig. 3
Fig. 3

Fundamental mode powers in waveguides 3 and 4 as a function of refractive index decrease in the electrode region. The parameters in calculation are the same as that in Fig. 2.

Fig. 4
Fig. 4

Normalized variable u as a function of variable c for different mode orders. The labeling parameters give the mode order. The parameters in calculation are the same as that in Fig. 2.

Fig. 5
Fig. 5

Mode profiles before and after the mode quasi-degeneracy; Δ n = n 2 n 1 , other parameters in the calculation are the same as that in Fig. 2.

Fig. 6
Fig. 6

Minimum value of c that can ensure all supported guided modes are quasi-degenerate. Labeling parameters give different quasi-degeneracy criteria. In the calculation, v = 2.97 , other parameters are the same as that in Fig. 4.

Fig. 7
Fig. 7

Total power of guided modes excited in the reflection region waveguide versus angle θ for different incident waveguide widths. The parameters in the calculation are n 2 = 3.37 , n 1 = n 3 = 3.35 , λ = 1.55 μ m , a = 2 μ m , and b = a + w cos θ .

Fig. 8
Fig. 8

Effect of controlling the mode excitation in the reflection region. The parameters in the calculation are (a) θ = 5 , w = 4 μ m , (b) θ = 5 , w = 20 μ m , and (c) θ = 6 , w = 20 μ m . Other parameters are n 2 = 3.37 , n 3 = 3.35 , λ = 1.55 μ m , a = 2 μ m , b = a + w cos θ , H = ( b + a ) tan θ , and Δ n = n 2 n 1 = 0.02 .

Fig. 9
Fig. 9

Relationship between the variables v c 2 and v when the quasi-degeneracy condition u = 2 is satisfied for all guided modes.

Fig. 10
Fig. 10

Fundamental mode power in waveguide 4 at the crossing state. The paremeters in the calculation are n 1 = n 2 = 3.37 , n 3 = 3.35 , λ = 1.55 μ m , a = 2 μ m , b = a + w cos θ , and H = ( b + a ) tan θ .

Fig. 11
Fig. 11

Wavelength sensitivity of the TIR switch. The values of Δ n are 0 and 0.02 for the crossing and the bar states, respectively. Other parameters in the calculation are the same as that in Fig. 2.

Fig. 12
Fig. 12

Switching characteristic of the thermo-optical TIR switch.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E in ( x 2 ) = { A 1 cos [ κ ( x 2 f ) cos θ ] exp [ i β 0 ( 1 ) ( x 2 f ) sin θ ] x 2 f cos θ < w 2 A 1 cos ( κ w 2 ) exp [ γ x 2 f cos θ + w γ 2 i β 0 ( 1 ) ( x 2 f ) sin θ ] x 2 f cos θ > w 2 } .
E in ( x 2 ) = N C N ( 2 ) E N ( 2 ) ( x 2 ) + even odd 0 C σ ( 2 ) E σ ( 2 ) ( x 2 ) d σ .
C N ( 2 ) = β N ( 2 ) 2 ω μ 0 + E in ( x 2 ) [ E N ( 2 ) ( x 2 ) ] * d x 2 ,
C σ ( 2 ) = β σ ( 2 ) 2 ω μ 0 + E in ( x 2 ) [ E σ ( 2 ) ( x 2 ) ] * d x 2 .
E ( 2 ) ( x 2 , z 2 ) = N C N ( 2 ) E N ( 2 ) ( x 2 ) exp ( i β N ( 2 ) z 2 ) + even odd 0 C σ ( 2 ) E σ ( 2 ) ( x 2 ) exp ( i β σ ( 2 ) z 2 ) d σ .
C 0 ( 3 ) = + E ( 2 ) ( x 2 , H ) E in ( x 2 ) d x 2 + E in ( x 2 ) 2 d x 2 ,
C 0 ( 4 ) = + E ( 2 ) ( x 2 , H ) E in ( x 2 ) d x 2 + E in ( x 2 ) 2 d x 2 .
C 0 ( 3 ) = N C N ( 2 ) exp ( i β N ( 2 ) H ) cos θ β 0 ( 1 ) 2 ω μ 0 + E N ( 2 ) ( x 2 ) E in ( x 2 ) d x 2 + even odd 0 + C σ ( 2 ) exp ( i β σ ( 2 ) H ) [ cos θ β 0 ( 1 ) 2 ω μ 0 + E σ ( 2 ) ( x 2 ) E in ( x 2 ) d x 2 ] d σ ,
C 0 ( 4 ) = N C N ( 2 ) exp ( i β N ( 2 ) H ) cos θ β 0 ( 1 ) 2 ω μ 0 + E N ( 2 ) ( x 2 ) E in ( x 2 ) d x 2 + even odd 0 + C σ ( 2 ) exp ( i β σ ( 2 ) H ) [ cos θ β 0 ( 1 ) 2 ω μ 0 + E σ ( 2 ) ( x 2 ) E in ( x 2 ) d x 2 ] d σ .
C 0 ( 3 ) = N cos θ β 0 ( 1 ) β N ( 2 ) [ C N ( 2 ) ] 2 exp ( i β N ( 2 ) H ) + even odd 0 + cos θ β 0 ( 1 ) β σ ( 2 ) [ C σ ( 2 ) ] 2 exp ( i β σ ( 2 ) H ) d σ ,
C 0 ( 4 ) = N ( 1 ) N cos θ β 0 ( 1 ) β N ( 2 ) [ C N ( 2 ) ] 2 exp ( i β N ( 2 ) H ) + even odd χ 0 + cos θ β 0 ( 1 ) β σ ( 2 ) [ C σ ( 2 ) ] 2 exp ( i β σ ( 2 ) H ) d σ .
ν 2 c 2 u 2 ( b a 1 ) = m π + arctan [ u 2 + ν 2 ( 1 c 2 ) ν 2 c 2 u 2 ] + arctan [ u ν 2 c 2 u 2 tanh ( u ) ] ,
ν 2 c 2 u 2 ( b a 1 ) = m π + arctan [ u 2 + ν 2 ( 1 c 2 ) ν 2 c 2 u 2 ] + arctan [ u ν 2 c 2 u 2 coth ( u ) ] .
L c m = π ( n 2 2 n 1 2 ) n eff m w eff m exp [ 2 a k 0 ( n eff m ) 2 n 1 2 ] 4 ( n eff m ) 2 n 1 2 [ n 2 2 ( n eff m ) 2 ] .

Metrics