Abstract

We present the local polymer infiltration of planar photonic crystal cavities via a maskless laser-writing technique. After the infiltration of the air holes with a UV-curable monomer a focused laser is used to locally polymerize the monomer in selected holes at the cavity boundaries. We show that cavity modes with different symmetries can be differently tuned depending on the size and the position of the infiltrated region around the cavity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).
  2. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley-VCH, 2004).
    [CrossRef]
  3. B-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  4. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: tuning and optical characterization of molecule orientation,” Opt. Lett. 31, 1238-1240 (2006).
    [CrossRef] [PubMed]
  5. R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
    [CrossRef]
  6. S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
    [CrossRef]
  7. M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrically tunable silicon 2-D photonic bandgap structures,” IEEE J. Quantum Electron. 12, 1527-1533 (2006).
    [CrossRef]
  8. P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. Wiersma, “Optical switching by capillary condendation,” Nat. Photonics 1, 172-175 (2007).
    [CrossRef]
  9. S. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett. 29, 2858-2860 (2004).
    [CrossRef]
  10. S. Tomljenovic-Hanic, C. Martijn de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14, 12451-12456 (2006).
    [CrossRef] [PubMed]
  11. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
    [CrossRef]
  12. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
    [CrossRef]
  13. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59-61 (2006).
    [CrossRef] [PubMed]
  14. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
    [CrossRef]
  15. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Schacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1713 (1996).
    [CrossRef]
  16. A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
    [CrossRef]
  17. R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
    [CrossRef]
  18. C. J. Smith, T. F. Krauss, H. Benisty, M. Rattier, C. Weisbuch, U. Oesterle, and R. Houdré, “Directionally dependent confinement in photonic-crystal microcavities,” J. Opt. Soc. Am. B 17, 2043-2051 (2000).
    [CrossRef]
  19. M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
    [CrossRef]
  20. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7, L13-L20 (2005).
    [CrossRef]
  21. O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
    [CrossRef]
  22. K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48, 92-100 (2003).
    [CrossRef]
  23. R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: the transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
    [CrossRef] [PubMed]
  24. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
    [CrossRef]
  25. M. Chanda and S. K. Roy, Plastics Technology Handbook (CRC, 2007).

2008 (1)

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

2007 (6)

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. Wiersma, “Optical switching by capillary condendation,” Nat. Photonics 1, 172-175 (2007).
[CrossRef]

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

M. Chanda and S. K. Roy, Plastics Technology Handbook (CRC, 2007).

2006 (7)

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrically tunable silicon 2-D photonic bandgap structures,” IEEE J. Quantum Electron. 12, 1527-1533 (2006).
[CrossRef]

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: tuning and optical characterization of molecule orientation,” Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, C. Martijn de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14, 12451-12456 (2006).
[CrossRef] [PubMed]

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

2005 (3)

J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

B-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

2004 (2)

2003 (1)

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48, 92-100 (2003).
[CrossRef]

2002 (2)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

2000 (1)

1996 (1)

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Schacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

1993 (1)

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: the transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Adibi, A.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Akahane, Y.

B-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Alloing, B.

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Anand, S.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: tuning and optical characterization of molecule orientation,” Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

Anderson, S. P.

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrically tunable silicon 2-D photonic bandgap structures,” IEEE J. Quantum Electron. 12, 1527-1533 (2006).
[CrossRef]

Asano, T.

B-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Askari, M.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Balet, L.

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Barthelemy, P.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. Wiersma, “Optical switching by capillary condendation,” Nat. Photonics 1, 172-175 (2007).
[CrossRef]

Bastiaansen, C.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

Beck, E.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48, 92-100 (2003).
[CrossRef]

Benisty, H.

Berger, V.

J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).

Bettotti, P.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

Bjarklev, A.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Broer, D.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

Bulla, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Busch, K.

Carlström, C.-F.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

Chanda, M.

M. Chanda and S. K. Roy, Plastics Technology Handbook (CRC, 2007).

Colocci, M.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

Decker, C.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48, 92-100 (2003).
[CrossRef]

Dunbar, L. A.

Eggleton, B. J.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Eggleton, J.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Eldada, L.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Schacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Emery, T.

Englund, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Erickson, D.

Faraon, A.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Fauchet, P. M.

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrically tunable silicon 2-D photonic bandgap structures,” IEEE J. Quantum Electron. 12, 1527-1533 (2006).
[CrossRef]

Ferrini, R.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: tuning and optical characterization of molecule orientation,” Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

Fiore, A.

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Föll, H.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley-VCH, 2004).
[CrossRef]

Forchel, A.

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

Francardi, M.

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Freeman, D.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Gaburro, Z.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. Wiersma, “Optical switching by capillary condendation,” Nat. Photonics 1, 172-175 (2007).
[CrossRef]

Gérard, J. M.

J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).

Gerardino, A.

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Ghulinyan, M.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. Wiersma, “Optical switching by capillary condendation,” Nat. Photonics 1, 172-175 (2007).
[CrossRef]

Giessen, H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Gösele, U.

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

Greiner, A.

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

Grillet, C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Haurylau, M.

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrically tunable silicon 2-D photonic bandgap structures,” IEEE J. Quantum Electron. 12, 1527-1533 (2006).
[CrossRef]

Hermann, D.

Hotchkiss, P. J.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Houdré, R.

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: tuning and optical characterization of molecule orientation,” Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

C. J. Smith, T. F. Krauss, H. Benisty, M. Rattier, C. Weisbuch, U. Oesterle, and R. Houdré, “Directionally dependent confinement in photonic-crystal microcavities,” J. Opt. Soc. Am. B 17, 2043-2051 (2000).
[CrossRef]

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: the transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Ilegems, M.

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: the transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Intonti, F.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

Jones, S. C.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Kamp, M.

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

Karouta, F.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

Kjellander, C.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

Krauss, T. F.

Kriha, O.

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

Le Thomas, N.

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Lee, M. W.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Lee, Y-H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Leuenberger, D.

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

Li, L. H.

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Lölkes, S.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley-VCH, 2004).
[CrossRef]

Lourtioz, J. M.

J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).

Luther-Davies, B.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

Madden, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Marder, S. R.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Marshall, K. L.

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrically tunable silicon 2-D photonic bandgap structures,” IEEE J. Quantum Electron. 12, 1527-1533 (2006).
[CrossRef]

Martijn de Sterke, C.

Martz, J.

Maystre, D.

J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).

Mingaleev, S.

Momeni, B.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Monat, C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Moosburger, J.

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

Mulot, M.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: tuning and optical characterization of molecule orientation,” Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

Nielsen, K.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Noda, S.

B-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Norwood, R. A.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Nötzel, R.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

Oesterle, U.

C. J. Smith, T. F. Krauss, H. Benisty, M. Rattier, C. Weisbuch, U. Oesterle, and R. Houdré, “Directionally dependent confinement in photonic-crystal microcavities,” J. Opt. Soc. Am. B 17, 2043-2051 (2000).
[CrossRef]

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: the transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Pavesi, L.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. Wiersma, “Optical switching by capillary condendation,” Nat. Photonics 1, 172-175 (2007).
[CrossRef]

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

Petroff, P.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Peyghambarian, N.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Pippel, E.

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

Psaltis, D.

Qiu, M.

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

Rattier, M.

Rockwood, T.

Roy, S. K.

M. Chanda and S. K. Roy, Plastics Technology Handbook (CRC, 2007).

Ruan, Y.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Salemink, H.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

Schacklette, L. W.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Schacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Scherer, A.

Schillinger, M.

Schwalm, R.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48, 92-100 (2003).
[CrossRef]

Schweizer, S. L.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

Smith, C. J.

Smith, C. L. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Snijders, J.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

Song, B-S.

B-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Sørensen, T.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Stanley, R. P.

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: the transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Steel, M. J.

Steinhart, M.

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

Stengel, K. M. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Schacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Stoltz, N.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Studer, K.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48, 92-100 (2003).
[CrossRef]

Tay, S.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Tchelnokov, A.

J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).

Thomas, J.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

Tomljenovic-Hanic, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

S. Tomljenovic-Hanic, C. Martijn de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14, 12451-12456 (2006).
[CrossRef] [PubMed]

Toninelli, C.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. Wiersma, “Optical switching by capillary condendation,” Nat. Photonics 1, 172-175 (2007).
[CrossRef]

Türck, V.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

van der Drift, E.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

van der Heijden, R.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

van der Heijden, R. W.

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

Vignolini, S.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

Vuckovic, J.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Wehrspohn, R.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

Wehrspohn, R. B.

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley-VCH, 2004).
[CrossRef]

Weisbuch, C.

C. J. Smith, T. F. Krauss, H. Benisty, M. Rattier, C. Weisbuch, U. Oesterle, and R. Houdré, “Directionally dependent confinement in photonic-crystal microcavities,” J. Opt. Soc. Am. B 17, 2043-2051 (2000).
[CrossRef]

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: the transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Wendorff, J. H.

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

Wiersma, D.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. Wiersma, “Optical switching by capillary condendation,” Nat. Photonics 1, 172-175 (2007).
[CrossRef]

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

Wild, B.

Wu, D. K. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Xu, C.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Schacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Yardley, J. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Schacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

Zabelin, V.

Zhao, L.

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

Zinoni, C.

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Zuppiroli, L.

Adv. Funct. Mater. (1)

O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, and A. Greiner, “Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting,” Adv. Funct. Mater. 17, 1327-1332 (2007).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

Appl. Phys. Lett. (5)

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91, 221109 (2007).
[CrossRef]

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-H. Lee, “Microfluidic photonic crystal double heterostructure,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, “Electrically tunable silicon 2-D photonic bandgap structures,” IEEE J. Quantum Electron. 12, 1527-1533 (2006).
[CrossRef]

J. Lightwave Technol. (1)

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Schacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1713 (1996).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microelectron. Eng. (1)

A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities for telecom-wavelength,” Microelectron. Eng. 84, 1480-1483 (2007).
[CrossRef]

Nat. Mater. (1)

B-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nat. Photonics (1)

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. Wiersma, “Optical switching by capillary condendation,” Nat. Photonics 1, 172-175 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: the transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Phys. Status Solidi C (1)

M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photons sources,” Phys. Status Solidi C 3, 3693-3696 (2006).
[CrossRef]

Prog. Org. Coat. (1)

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48, 92-100 (2003).
[CrossRef]

Other (3)

M. Chanda and S. K. Roy, Plastics Technology Handbook (CRC, 2007).

J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley-VCH, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Front photoluminescence spectrum collected from an L 3 cavity (see the SEM image in the inset: lattice constant a = 330 nm and hole diameter d = 202 nm ). The resonance wavelengths of the TE cavity modes calculated for an air filling factor f = 0.34 are shown (dashed lines). The Γ K lattice and the TE polarization ( z ) directions are indicated. (b) Calculated H z -field maps of the TE cavity modes.

Fig. 2
Fig. 2

(a) Local infiltration procedure. After infiltration with a liquid monomer a UV laser is focused on the photonic crystal inducing local polymerization of the monomer inside the selected holes. The monomer is then removed from the other holes by washing the sample in organic solvents. (b) Chemical structures of the dimethacrylate monomer SR214 (1,4-butanediol dimethacrylate) and of the photosensitive initiator Irgacure 184 [(1-hydroxycyclohexyl)phenyl-ketone].

Fig. 3
Fig. 3

SEM images of the infiltrated photonic crystal structure after local polymerization and monomer removal: (a)–(c) top-view images of the L 3 cavity globally (filled area diameter = 5.2 μ m ) and locally (filled area diameter = 1.2 and 1.8 μ m ) infiltrated, respectively; (d) tilted top-view image of the locally infiltrated cavity shown in (b); (e) cross-section image of the globally infiltrated cavity shown in (a).

Fig. 4
Fig. 4

Front photoluminescence (PL) spectrum collected from the globally infiltrated L 3 cavity shown in Fig. 3a (solid curves). The resonance peaks for the corresponding empty cavity are shown as references (dashed curves) as well as the bandgap and the air band boundaries for the filled photonic crystal.

Fig. 5
Fig. 5

Front photoluminescence (PL) spectrum collected from the L 3 cavity with locally infiltrated boundaries in the Γ M direction shown in Fig. 3b (solid curves). The resonance peaks for the corresponding empty cavity are shown as references (dashed curves). The H z -field maps calculated for cavity 1 and air band 1 modes are shown.

Fig. 6
Fig. 6

Front photoluminescence (PL) spectrum collected from the L 3 cavity with locally infiltrated boundaries in the ГK direction shown in Fig. 3c (solid curves). The resonance peaks for the corresponding empty cavity are shown as references (dashed curves). The H z -field maps calculated for cavity 1 and air band 1 modes are shown.

Metrics