Abstract

Semi-insulating and conducting SiC crystalline transparent substrates were studied after being processed by femtosecond (fs) laser radiation (780nm at 160fs). Z-scan and damage threshold experiments were performed on both SiC bulk materials to determine each sample’s nonlinear and threshold parameters. “Damage” in this text refers to an index of refraction modification as observed visually under an optical microscope. In addition, a study was performed to understand the damage threshold as a function of numerical aperture. Presented here for the first time, to the best of our knowledge, are the damage threshold, nonlinear index of refraction, and nonlinear absorption measured values.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Petite, P. Daguzan, S. Guizard, and P. Martin, "Femtosecond history of free carriers in the conduction band of a wide-bandgap oxide," in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1995), Vol. 15, pp. 40-44.
  2. A. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
    [CrossRef]
  3. J. Copper, Purdue Wide Band Gap Semiconductor Device Research Program, Purdue University College of Engineering, http://www.ecn.purdue.edu/WBG/Index.html.
  4. Y. Dong and P. Molian, "Femtosecond pulsed laser ablation of 3C-SiC thin film on silicon," Appl. Phys. A 77, 839-846 (2003).
    [CrossRef]
  5. J. Ashcom, C. Schaffer, and E. Mazur, "Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica," J. Opt. Soc. Am. B 23, 2317-2322 (2006).
    [CrossRef]
  6. J. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall, 1995), pp. 50-55.
  7. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
    [CrossRef]
  8. A. M. Strelstov, J. K. Ranka, and A. L. Geata, "Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica," Opt. Lett. 23, 798-800 (1998).
    [CrossRef]
  9. L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
    [CrossRef]
  10. A. Evwaraye, S. Smith, and W. Mitchel, "Persistent photoconductance in in n-type 6H-SiC," J. Appl. Phys. 77, 4477-4481 (1995).
    [CrossRef]
  11. P. Chapple, J. Staromlynka, J. Herman, T. McKay, and R. McDuff, "Single-beam Z-scan: measurement techniques and analysis," J. Nonlinear Opt. Phys. Mater. 6, 251-293 (1997).
    [CrossRef]
  12. M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  13. M. Yin, H. P. Li, S. H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
    [CrossRef]
  14. M. Sheik-Bahae, D. Hutchings, D. Hagan, and E. van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 2, 1296-1309 (1991).
    [CrossRef]
  15. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge U. Press, 2000), p. 174.
  16. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, "Dynamics of femtosecond laser interactions with dielectrics," Appl. Phys. A 79, 1695-1709 (2004).
    [CrossRef]

2006 (1)

2004 (2)

L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, "Dynamics of femtosecond laser interactions with dielectrics," Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

2003 (1)

Y. Dong and P. Molian, "Femtosecond pulsed laser ablation of 3C-SiC thin film on silicon," Appl. Phys. A 77, 839-846 (2003).
[CrossRef]

2000 (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

1999 (1)

A. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

1998 (2)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

A. M. Strelstov, J. K. Ranka, and A. L. Geata, "Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica," Opt. Lett. 23, 798-800 (1998).
[CrossRef]

1997 (1)

P. Chapple, J. Staromlynka, J. Herman, T. McKay, and R. McDuff, "Single-beam Z-scan: measurement techniques and analysis," J. Nonlinear Opt. Phys. Mater. 6, 251-293 (1997).
[CrossRef]

1995 (1)

A. Evwaraye, S. Smith, and W. Mitchel, "Persistent photoconductance in in n-type 6H-SiC," J. Appl. Phys. 77, 4477-4481 (1995).
[CrossRef]

1991 (1)

M. Sheik-Bahae, D. Hutchings, D. Hagan, and E. van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 2, 1296-1309 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Appl. Phys. A (2)

Y. Dong and P. Molian, "Femtosecond pulsed laser ablation of 3C-SiC thin film on silicon," Appl. Phys. A 77, 839-846 (2003).
[CrossRef]

S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, "Dynamics of femtosecond laser interactions with dielectrics," Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Appl. Phys. B (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Sheik-Bahae, D. Hutchings, D. Hagan, and E. van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 2, 1296-1309 (1991).
[CrossRef]

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

J. Appl. Phys. (1)

A. Evwaraye, S. Smith, and W. Mitchel, "Persistent photoconductance in in n-type 6H-SiC," J. Appl. Phys. 77, 4477-4481 (1995).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

P. Chapple, J. Staromlynka, J. Herman, T. McKay, and R. McDuff, "Single-beam Z-scan: measurement techniques and analysis," J. Nonlinear Opt. Phys. Mater. 6, 251-293 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

A. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Other (4)

G. Petite, P. Daguzan, S. Guizard, and P. Martin, "Femtosecond history of free carriers in the conduction band of a wide-bandgap oxide," in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1995), Vol. 15, pp. 40-44.

J. Copper, Purdue Wide Band Gap Semiconductor Device Research Program, Purdue University College of Engineering, http://www.ecn.purdue.edu/WBG/Index.html.

J. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall, 1995), pp. 50-55.

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge U. Press, 2000), p. 174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup for damage threshold and Z-scan experiments.

Fig. 2
Fig. 2

Top, a plot of DT for SiC SI, SiC conducting, and FS using a spherical 125 mm lens ( NA = 0.022 ) for 780 nm at 160 fs . FS is baseline sample used to calibrate our DT experiments. FS has a DT that is well known to be 3.0 4.0 J cm 2 as referenced [7]. Bottom, the high NA DT plot of SiC semi-insulating, SiC conducting, and FS using an anamorphic lens ( NA x = 0.0035 in x and NA y = 0.256 in y) for 780 nm at 160 fs . The large solid squares and open triangles represent where the visible damage begins.

Fig. 3
Fig. 3

UV–Vis results on semi-insulating and conducting SiC.

Fig. 4
Fig. 4

Left, the normalized transmission for the open aperture; right, the normalized transmission for the closed aperture, both for the SiC semi-insulating sample. The parameters used for this sample were energy of 3 μ J , a 750 mm lens, a wavelength of 780 nm , a pulse width of 160 fs , and a 5.1 mm entrance aperture.

Fig. 5
Fig. 5

DT optical microscope results using Nomarski DIC and image processing for better viewing purposes for (left) semi-insulating SiC and (right) conducting SiC. Image processing was performed to better resolve modified surface lines. These results were both done using 780 nm at 160 fs .

Fig. 6
Fig. 6

Top, AFM results of a 5.5 μ m wide and a 10 nm raised surface modification on semi-insulating SiC material. Bottom, conducting SiC sample AFM results of a 3.3 μ m wide and a 30 nm trench surface modification.

Tables (3)

Tables Icon

Table 1 SiC Sample Characteristics for Semi-insulating and Conducting Types a

Tables Icon

Table 2 DT Measured Results for Two Lenses, 125 mm Focal and Anamorphic Lens (High NA), Using 780 nm at 160 fs

Tables Icon

Table 3 Nonlinear Measurements Resulting from Z-scan Experiment Using 780 nm at 160 fs a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

w o x , y = λ f x , y M x , v 2 π w z ,
w z = w o x , y 1 + ( Z Z R ) 2 ,
F o = 2 E π w o x w o y ,
n 2 = Δ Φ o k L 1 I o ,
I ( z , E ) = 2 E ln ( 1 + 2 ) Δ t π w o 2 ,
Δ Φ o = Δ T p v ( 0.406 ) ( 1 S ) 0.25 ,
S = 1 exp ( 2 r a 2 w a 2 ) .
T x ( z , β , E ) 1 2 q o ( z , β , E ) ln ( 1 + q o ( z , β , E ) sech ( x ) 2 ) d x ,
q o ( z , β , E ) β I ( z , E ) L .
λ = 1239.8 E ( e V ) .

Metrics