Abstract

We report on a numerical investigation for compensating power depletion caused by stimulated Raman scattering (SRS) in high-power delivery fibers with the spectral-inversion approach. The spectral inversion is realized by four-wave mixing, considering the character of an optical fiber Raman gain profile. The power depletion of the signal by SRS can be effectively compensated using this method. The system parameters for the best compensation are optimized for the delivery of the laser beam with a power of 100W in a 200-m-long standard single-mode fiber. The present method can be applied to higher-power delivery systems and longer fibers. The spectral-inversion method is compared with the alternative method to directly filtering Stokes waves for SRS cancellation. The influence of the initial phases of the Stokes waves on the compensating process is also discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. N. Islam, Raman Amplifiers for Telecommunications (Springer-Verlag, 2004).
  2. G. P. Agrawal, Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics, 3rd ed. (Publishing House of Electronics Industry, 2003).
  3. S. Tariq and J. C. Palais, "A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications," J. Lightwave Technol. 11, 1914-1924 (1993).
    [Crossref]
  4. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, "Effect of modulation statistics on Raman crosstalk in WDM system," IEEE Photonics Technol. Lett. 7, 101-103 (1995).
    [Crossref]
  5. J. Wang, X. Sun, and M. Zhang, "Effect of group velocity dispersion on stimulated Raman crosstalk in multichannel transmission systems," IEEE Photonics Technol. Lett. 10, 540-542 (1998).
    [Crossref]
  6. A. R. Chraplyvy and R. W. Tkach, "What is the actual capacity of single-mode fibers in amplified lightwave system," IEEE Photonics Technol. Lett. 5, 666-668 (1993).
    [Crossref]
  7. M. E. Marhic, "Cancellation of stimulated-Raman-scattering cross talk in wavelength-division-multiplexed optical communication systems by series or parallel techniques," J. Opt. Soc. Am. B 15, 957-963 (1998).
    [Crossref]
  8. A. G. Grandpierre, D. N. Christodoulides, and J. Toulouse, "Theory of stimulated Raman scattering cancellation in wavelength-division-multiplexed systems via spectral inversion," IEEE Photonics Technol. Lett. 11, 1271-1273 (1999).
    [Crossref]
  9. H. Yu and K. P. Ho, "Limitation of stimulated Raman scattering cancellation in WDM systems via spectral inversion," IEEE Photonics Technol. Lett. 12, 998-1000 (2000).
    [Crossref]
  10. Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004).
    [Crossref]
  11. L. A. Zenteno, J. Wang, D. T. Walton, B. A. Ruffin, M. J. Li, S. Gray, A. Crowley, and X. Chen, "Suppression of Raman gain in single-transverse-mode dual-hole assisted fiber," Opt. Express 13, 8921-8926 (2005).
    [Crossref] [PubMed]
  12. J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejo, "Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier," Opt. Lett. 31, 2550-2552 (2006).
    [Crossref] [PubMed]
  13. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006).
    [Crossref] [PubMed]
  14. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguide," Appl. Phys. Lett. 20, 276-278 (1973).
    [Crossref]
  15. R. H. Stolen and C. Lee, "Development of the stimulated Raman spectrum in single-mode silica fibers," J. Opt. Soc. Am. B 1, 652-657 (1984).
    [Crossref]
  16. J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, "Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions," J. Lightwave Technol. 23, 3808-3814 (2005).
    [Crossref]
  17. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Technol. 19, 1691-1697 (2001).
    [Crossref]
  18. S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, "Efficient phase modulation scheme for suppressing stimulated Brillouin scattering," in Technical Digest International Conference on Integrated Optics Optical Fiber Communications (IEEE, 2005), Vol. 2, paper WD2-1, pp. 110-111.
  19. H. Lee, "Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings," Opt. Express 11, 3467-3472 (2003).
    [Crossref] [PubMed]
  20. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, "Pulsed laser damage to optical fibers," Appl. Opt. 24, 3140-3145 (1985).
    [Crossref] [PubMed]
  21. P. D. Drummond and J. F. Corney, "Quantum noise in optical fibers. I. Stochastic equations," J. Opt. Soc. Am. B 18, 139-152 (2001).
    [Crossref]
  22. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
    [Crossref] [PubMed]
  23. G. Cappellini and S. Trillo, "Third-order three-wave mixing in single-mode fibers: exact solutions and spectral instability effects," J. Opt. Soc. Am. B 8, 824-838 (1991).
    [Crossref]
  24. K. Inoue and T. Mukai, "Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier," Opt. Lett. 26, 10-12 (2001).
    [Crossref]
  25. G. K. Wong, A. Y. H. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Continuous-wave tunable optical parametric generation in a photonic-crystal fiber," J. Opt. Soc. Am. B 22, 2505-2511 (2005).
    [Crossref]
  26. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, "Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers," Opt. Express 14, 2873-2879 (2006).
    [Crossref] [PubMed]
  27. Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photonics Technol. Lett. 10, 218-220 (1998).
    [Crossref]

2006 (3)

2005 (3)

2004 (1)

Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004).
[Crossref]

2003 (2)

H. Lee, "Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings," Opt. Express 11, 3467-3472 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

2001 (3)

2000 (1)

H. Yu and K. P. Ho, "Limitation of stimulated Raman scattering cancellation in WDM systems via spectral inversion," IEEE Photonics Technol. Lett. 12, 998-1000 (2000).
[Crossref]

1999 (1)

A. G. Grandpierre, D. N. Christodoulides, and J. Toulouse, "Theory of stimulated Raman scattering cancellation in wavelength-division-multiplexed systems via spectral inversion," IEEE Photonics Technol. Lett. 11, 1271-1273 (1999).
[Crossref]

1998 (3)

M. E. Marhic, "Cancellation of stimulated-Raman-scattering cross talk in wavelength-division-multiplexed optical communication systems by series or parallel techniques," J. Opt. Soc. Am. B 15, 957-963 (1998).
[Crossref]

J. Wang, X. Sun, and M. Zhang, "Effect of group velocity dispersion on stimulated Raman crosstalk in multichannel transmission systems," IEEE Photonics Technol. Lett. 10, 540-542 (1998).
[Crossref]

Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photonics Technol. Lett. 10, 218-220 (1998).
[Crossref]

1995 (1)

F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, "Effect of modulation statistics on Raman crosstalk in WDM system," IEEE Photonics Technol. Lett. 7, 101-103 (1995).
[Crossref]

1993 (2)

S. Tariq and J. C. Palais, "A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications," J. Lightwave Technol. 11, 1914-1924 (1993).
[Crossref]

A. R. Chraplyvy and R. W. Tkach, "What is the actual capacity of single-mode fibers in amplified lightwave system," IEEE Photonics Technol. Lett. 5, 666-668 (1993).
[Crossref]

1991 (1)

1985 (1)

1984 (1)

1973 (1)

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguide," Appl. Phys. Lett. 20, 276-278 (1973).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguide," Appl. Phys. Lett. 20, 276-278 (1973).
[Crossref]

IEEE Photonics Technol. Lett. (6)

F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, "Effect of modulation statistics on Raman crosstalk in WDM system," IEEE Photonics Technol. Lett. 7, 101-103 (1995).
[Crossref]

J. Wang, X. Sun, and M. Zhang, "Effect of group velocity dispersion on stimulated Raman crosstalk in multichannel transmission systems," IEEE Photonics Technol. Lett. 10, 540-542 (1998).
[Crossref]

A. R. Chraplyvy and R. W. Tkach, "What is the actual capacity of single-mode fibers in amplified lightwave system," IEEE Photonics Technol. Lett. 5, 666-668 (1993).
[Crossref]

A. G. Grandpierre, D. N. Christodoulides, and J. Toulouse, "Theory of stimulated Raman scattering cancellation in wavelength-division-multiplexed systems via spectral inversion," IEEE Photonics Technol. Lett. 11, 1271-1273 (1999).
[Crossref]

H. Yu and K. P. Ho, "Limitation of stimulated Raman scattering cancellation in WDM systems via spectral inversion," IEEE Photonics Technol. Lett. 12, 998-1000 (2000).
[Crossref]

Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photonics Technol. Lett. 10, 218-220 (1998).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (5)

Opt. Commun. (1)

Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Other (3)

M. N. Islam, Raman Amplifiers for Telecommunications (Springer-Verlag, 2004).

G. P. Agrawal, Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics, 3rd ed. (Publishing House of Electronics Industry, 2003).

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, "Efficient phase modulation scheme for suppressing stimulated Brillouin scattering," in Technical Digest International Conference on Integrated Optics Optical Fiber Communications (IEEE, 2005), Vol. 2, paper WD2-1, pp. 110-111.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SRS compensation scheme; (b) Scheme for spectral inversion by FWM. SI signal, spectrally inverted signal; SI Stokes, spectrally inverted Stokes.

Fig. 2
Fig. 2

Simulations of SRS compensation for 100 W signal propagation in 200 - m -long single-mode fiber. (a) Signal power evolution along the fiber. Dotted curve, with SRS; solid curve, without SRS. (b) The spectrum of signal and its Stokes waves at a propagation distance of 150 m . Signal power is depleted to be 65 W . (c) Spectral inversion by FWM. Signal and its Stokes are spectrally inverted about the pump. The pump power depleted from 73 W to 12.7 W , and the signal power is amplified to 81 W . (d) Signal power compensation at the end of the fiber. Its value is boosted up to 99 W .

Fig. 3
Fig. 3

Pump powers for FWM at different locations of the SI element in the high-power-delivery fiber. P 0 is the pump power for the FWM. L 1 ( L 2 ) stands for the length of the first (second) section of the delivery fiber.

Fig. 4
Fig. 4

Signal power as a function of the length of the HNLF for spectral inversions. Signal power reaches its maximum value of 81 W at 1.2 m .

Fig. 5
Fig. 5

Signal power versus the length of the second section of the high-power-delivery fiber. The signal power can be efficiently compensated up to 99 W when the length of the second section of the fiber is from 36 m to 133 m .

Fig. 6
Fig. 6

Numerical results of the Stokes filtered method and the compensation method. The two sections of the 200 - m -long fiber are 130 m and 70 m long, respectively. At the end of the delivery fiber, signal power is 99 W ( 95 W ) with the compensation method (the Stokes filtered method).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d S i = j = 1 i 1 G ( Ω i Ω j ) S i S j Δ l A k = i + 1 N G ( Ω k Ω i ) S i S k Δ l A ,
d S i = j = 1 N G ( Ω i Ω j ) S i S j Δ l A ,
d S i ( spon ) = 1 2 1.5 × 10 27 λ p 4 π N A 2 Δ Ω A G peak ( i > 1 ) ,
d A p d z = 1 2 α A p + i γ ( A P 2 + 2 A s m 2 + 2 A i m 2 ) A P + 2 i γ m = 1 N A P * A s m A i m e i Δ β m z ,
d A s m d z = 1 2 α A s m + i γ ( 2 A P 2 + A s m 2 + 2 A i m 2 ) A s m + i γ ( A i m ) * A p 2 e i Δ β m z ,
d A i m d z = 1 2 α A i m + i γ ( 2 A P 2 + 2 A s m 2 + A i m 2 ) A i m + i γ ( A s m ) * A p 2 e i Δ β m z ,
Δ β m = 1 12 β 4 ( ϖ s m ϖ P ) 2 .
d P p d z = α P p 4 γ m = 1 N ( P P 2 P s m P i m ) 1 2 sin Φ ,
d P s m d z = α P s m + 2 γ ( P p 2 P s m P i m ) 1 2 sin Φ ,
d P i m d z = α P i m + 2 γ ( P p 2 P s m P i m ) sin Φ ,
d Φ d z = Δ β m + γ ( 2 P p 2 ( P s m ) 2 ( P i m ) 2 ) + γ P P [ ( P s m P i m ) 1 2 + ( P i m P s m ) 1 2 4 ( P s m P i m P P 2 ) 1 2 ] cos Φ ,
Φ = Δ β m z + ϕ s m + ϕ i m 2 ϕ P ,

Metrics