Abstract

We report on the linear and nonlinear optical properties of the novel organic crystal 4-N, N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS). The principal refractive indices n1, n2, and n3 have been determined by a direct measurement of the group index dispersion over a broad wavelength range from 0.6to1.6μm. The linear absorption coefficients for light polarized along the dielectric axes have been measured in the transparency range from 600to2000nm. DSTMS crystals show a large birefringence of Δn=0.5 and low absorption α<0.7cm1 in the telecommunication wavelength range at 1.55μm. Furthermore, the nonlinear optical tensor elements d111, d122, and d212 have been determined by the Maker-fringe technique at the fundamental wavelength of 1.9μm. DSTMS crystals exhibit a very large nonlinear activity with a nonlinear optical coefficient d111=214±20pmV. Phase-matching curves determined from our optical data showed that parametric oscillation can be achieved in the wavelength range from 1to2.2μm with effective nonlinear optical coefficients larger than 25pmV.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Ch. Bosshard, K. Sutter, Ph. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).
  2. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
    [CrossRef]
  3. T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002).
    [CrossRef]
  4. L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, Ch. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
    [CrossRef]
  5. Ph. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surf. Sci. 220, 88-95 (2003).
    [CrossRef]
  6. L. Mutter, A. Guarino, M. Jazbinsek, M. Zgonik, P. Günter, and M. Döbeli, "Ion implanted optical waveguides in nonlinear optical organic crystal," Opt. Express 15, 629-638 (2007).
    [CrossRef] [PubMed]
  7. M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, "Single-pass thin-film electro-optic modulator based on an organic molecular salt," Appl. Phys. Lett. 74, 635-637 (1999).
    [CrossRef]
  8. W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
    [CrossRef]
  9. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, "Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment," J. Opt. Soc. Am. B 23, 1822-1835 (2006).
    [CrossRef]
  10. U. Meier, M. Bösch, Ch. Bosshard, F. Pan, and P. Günter, "Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate at telecommunication wavelengths," J. Appl. Phys. 83, 3486-3489 (1998).
    [CrossRef]
  11. S. Brahadeeswaran, S. Onduka, M. Takagi, Y. Takahashi, H. Adachi, M. Yoshimura, Y. Mori, and T. Sasaki, "Growth of high-quality DAST crystals for THz applications," J. Cryst. Growth 292, 441-444 (2006).
    [CrossRef]
  12. A. S. H. Hameed, W. C. Yu, C. Y. Tai, and C. W. Lan, "Effect of sodium toluene sulfonate on the nucleation, growth and characterization of DAST single crystals," J. Cryst. Growth 292, 510-514 (2006).
    [CrossRef]
  13. P. Lavéant, C. Medrano, B. Ruiz, and P. Günter, "Growth of nonlinear optical DAST crystals," Chimia 57, 349-351 (2003).
    [CrossRef]
  14. B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, "Quadratic optical nonlinearities of N-methyl and N-aryl pyridinium salts," Adv. Funct. Mater. 13, 347-357 (2003).
    [CrossRef]
  15. O. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic nonlinear optical crystals based on configurationally locked polyene for melt growth," Chem. Mater. 18, 4049-4054 (2006).
    [CrossRef]
  16. T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, "Tunable sub-terahertz wave generation from an organic DAST crystal," Jpn. J. Appl. Phys., Part 1 44, 652-654 (2005).
    [CrossRef]
  17. Z. Yang, S. Aravazhi, A. Schneider, P. Seiler, M. Jazbinsek, and P. Günter, "Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics," Adv. Funct. Mater. 15, 1072-1076 (2005).
    [CrossRef]
  18. Z. Yang, L. Mutter, B. Ruiz, S. Aravazhi, M. Stillhart, M. Jazbinsek, V. Gramlich, and P. Günter, "Large-size and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation," Adv. Funct. Mater. (to be published).
  19. E. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, "Crystal growth and characterization of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate," Adv. Mater. (Weinheim, Ger.) 8, 592-595 (1996).
    [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2002).
  21. A. Schneider, F. D. J. Brunner, and P. Günter, "Determination of the refractive index over a wide wavelength range through time-delay measurements of femtosecond pulses," Opt. Commun. 275, 354-358 (2007).
    [CrossRef]
  22. J. Jerphagnon and S. Kurtz, "Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals," J. Appl. Phys. 41, 1667-1681 (1970).
    [CrossRef]
  23. Ch. Bosshard, R. Spreiter, L. Degiorgi, and P. Günter, "Infrared and Raman spectroscopy of the organic crystal DAST: polarization dependence and contribution of molecular vibrations to the linear electro-optic effect," Phys. Rev. B 66, 205107 (2002).
    [CrossRef]
  24. B. Wyncke and F. Brehat, "Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals," J. Phys. B 22, 363-376 (1989).
    [CrossRef]

2007

A. Schneider, F. D. J. Brunner, and P. Günter, "Determination of the refractive index over a wide wavelength range through time-delay measurements of femtosecond pulses," Opt. Commun. 275, 354-358 (2007).
[CrossRef]

L. Mutter, A. Guarino, M. Jazbinsek, M. Zgonik, P. Günter, and M. Döbeli, "Ion implanted optical waveguides in nonlinear optical organic crystal," Opt. Express 15, 629-638 (2007).
[CrossRef] [PubMed]

2006

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, "Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment," J. Opt. Soc. Am. B 23, 1822-1835 (2006).
[CrossRef]

S. Brahadeeswaran, S. Onduka, M. Takagi, Y. Takahashi, H. Adachi, M. Yoshimura, Y. Mori, and T. Sasaki, "Growth of high-quality DAST crystals for THz applications," J. Cryst. Growth 292, 441-444 (2006).
[CrossRef]

A. S. H. Hameed, W. C. Yu, C. Y. Tai, and C. W. Lan, "Effect of sodium toluene sulfonate on the nucleation, growth and characterization of DAST single crystals," J. Cryst. Growth 292, 510-514 (2006).
[CrossRef]

O. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic nonlinear optical crystals based on configurationally locked polyene for melt growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

2005

T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, "Tunable sub-terahertz wave generation from an organic DAST crystal," Jpn. J. Appl. Phys., Part 1 44, 652-654 (2005).
[CrossRef]

Z. Yang, S. Aravazhi, A. Schneider, P. Seiler, M. Jazbinsek, and P. Günter, "Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics," Adv. Funct. Mater. 15, 1072-1076 (2005).
[CrossRef]

2004

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

2003

P. Lavéant, C. Medrano, B. Ruiz, and P. Günter, "Growth of nonlinear optical DAST crystals," Chimia 57, 349-351 (2003).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, "Quadratic optical nonlinearities of N-methyl and N-aryl pyridinium salts," Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, Ch. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

Ph. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surf. Sci. 220, 88-95 (2003).
[CrossRef]

2002

Ch. Bosshard, R. Spreiter, L. Degiorgi, and P. Günter, "Infrared and Raman spectroscopy of the organic crystal DAST: polarization dependence and contribution of molecular vibrations to the linear electro-optic effect," Phys. Rev. B 66, 205107 (2002).
[CrossRef]

T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

2000

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

1999

M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, "Single-pass thin-film electro-optic modulator based on an organic molecular salt," Appl. Phys. Lett. 74, 635-637 (1999).
[CrossRef]

1998

U. Meier, M. Bösch, Ch. Bosshard, F. Pan, and P. Günter, "Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate at telecommunication wavelengths," J. Appl. Phys. 83, 3486-3489 (1998).
[CrossRef]

1996

E. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, "Crystal growth and characterization of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate," Adv. Mater. (Weinheim, Ger.) 8, 592-595 (1996).
[CrossRef]

1989

B. Wyncke and F. Brehat, "Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals," J. Phys. B 22, 363-376 (1989).
[CrossRef]

1970

J. Jerphagnon and S. Kurtz, "Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals," J. Appl. Phys. 41, 1667-1681 (1970).
[CrossRef]

Adv. Funct. Mater.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, "Quadratic optical nonlinearities of N-methyl and N-aryl pyridinium salts," Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

Z. Yang, S. Aravazhi, A. Schneider, P. Seiler, M. Jazbinsek, and P. Günter, "Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics," Adv. Funct. Mater. 15, 1072-1076 (2005).
[CrossRef]

T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Adv. Mater. (Weinheim, Ger.)

E. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, "Crystal growth and characterization of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate," Adv. Mater. (Weinheim, Ger.) 8, 592-595 (1996).
[CrossRef]

Appl. Phys. Lett.

M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, "Single-pass thin-film electro-optic modulator based on an organic molecular salt," Appl. Phys. Lett. 74, 635-637 (1999).
[CrossRef]

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Appl. Surf. Sci.

Ph. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surf. Sci. 220, 88-95 (2003).
[CrossRef]

Chem. Mater.

O. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic nonlinear optical crystals based on configurationally locked polyene for melt growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Chimia

P. Lavéant, C. Medrano, B. Ruiz, and P. Günter, "Growth of nonlinear optical DAST crystals," Chimia 57, 349-351 (2003).
[CrossRef]

J. Appl. Phys.

J. Jerphagnon and S. Kurtz, "Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals," J. Appl. Phys. 41, 1667-1681 (1970).
[CrossRef]

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, Ch. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

U. Meier, M. Bösch, Ch. Bosshard, F. Pan, and P. Günter, "Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate at telecommunication wavelengths," J. Appl. Phys. 83, 3486-3489 (1998).
[CrossRef]

J. Cryst. Growth

S. Brahadeeswaran, S. Onduka, M. Takagi, Y. Takahashi, H. Adachi, M. Yoshimura, Y. Mori, and T. Sasaki, "Growth of high-quality DAST crystals for THz applications," J. Cryst. Growth 292, 441-444 (2006).
[CrossRef]

A. S. H. Hameed, W. C. Yu, C. Y. Tai, and C. W. Lan, "Effect of sodium toluene sulfonate on the nucleation, growth and characterization of DAST single crystals," J. Cryst. Growth 292, 510-514 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

B. Wyncke and F. Brehat, "Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals," J. Phys. B 22, 363-376 (1989).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, "Tunable sub-terahertz wave generation from an organic DAST crystal," Jpn. J. Appl. Phys., Part 1 44, 652-654 (2005).
[CrossRef]

Opt. Commun.

A. Schneider, F. D. J. Brunner, and P. Günter, "Determination of the refractive index over a wide wavelength range through time-delay measurements of femtosecond pulses," Opt. Commun. 275, 354-358 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

Ch. Bosshard, R. Spreiter, L. Degiorgi, and P. Günter, "Infrared and Raman spectroscopy of the organic crystal DAST: polarization dependence and contribution of molecular vibrations to the linear electro-optic effect," Phys. Rev. B 66, 205107 (2002).
[CrossRef]

Science

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Other

Ch. Bosshard, K. Sutter, Ph. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2002).

Z. Yang, L. Mutter, B. Ruiz, S. Aravazhi, M. Stillhart, M. Jazbinsek, V. Gramlich, and P. Günter, "Large-size and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation," Adv. Funct. Mater. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Positively charged nonlinear optical active chromophore stilbazolium and negatively charged 2,4,6-trimethylbenzenesulfonate anion. (b) Arrangement of the molecules in the unit cell as viewed along the c axis.

Fig. 2
Fig. 2

Experimental setup for determining the transit time of a femtosecond pulse traveling through a sample. Correlation measurements between a probe pulse in a delay line and a second pulse, which passes through the sample, are performed by noncollinear phase-matched second-harmonic generation in a β - Ba B 2 O 4 crystal. A signal is detected with the photodiode (PD) only when the two pulses are spatially and temporally overlapping. A second correlation measurement without the sample is done to determine the time retardation Δ T relative to air.

Fig. 3
Fig. 3

Group indices n g , 1 (circles), n g , 2 (diamonds), and n g , 3 (triangles) of DSTMS as a function of the wavelength λ. The dashed curves are according to Eqs. (2, 3) and correspond best to the experimental data, obtained by a least-squares theoretical analysis. The solid curves are the corresponding dispersion relations of the refractive indices n 1 , n 2 , and n 3 , respectively.

Fig. 4
Fig. 4

Absorption coefficients α 1 (solid curve), α 2 (dashed curve) and α 3 (dotted curve) of DSTMS as a function of the wavelength λ.

Fig. 5
Fig. 5

Maker-fringe curve obtained by rotating a c plate DSTMS crystal around the dielectric x 1 axis. The impinged fundamental beam at 1.9 μ m as well as the generated second-harmonic light at 0.95 μ m were s polarized.

Fig. 6
Fig. 6

Phase-matching curves for parametric light generation of type I (a1) and II (b1) as functions of the internal tuning angle θ for pumping wavelength of 750 nm (solid curve), 800 nm (dashed curve), 960 nm (dotted curve) and 1064 nm (dashed-dotted curve). The corresponding effective nonlinear optical coefficients d eff are depicted in (a2) and (b2). The orientation of the samples and the polarizations of the interacting electric fields are depicted above the graphs.

Tables (2)

Tables Icon

Table 1 Sellmeier Parameters for the Refractive Index Dispersion of Eq. (3) that Correspond Best to the Experimental Data Shown in Fig. 3

Tables Icon

Table 2 Nonlinear Optical Coefficients d i j k , a Coherence Lengths l c , a Electronic Contribution to the Electro-optic Coefficient r 111 e b and the Corresponding Electro-optic Figure of Merit b at 1.9 μ m of DSTMS (This Work) and DAST [20]

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( d , λ ) = d c [ n g ( λ ) n g , air ( λ ) ] ,
n g ( λ ) = n ( λ ) λ n ( λ ) λ .
n 2 ( λ ) = n 0 2 + q λ 0 2 λ 2 λ 0 2 ,
P 1 2 ω = ϵ 0 ( d 111 E 1 2 + d 122 E 2 2 + d 133 E 3 2 + 2 d 113 E 1 E 3 ) ,
P 2 2 ω = ϵ 0 ( 2 d 223 E 2 E 3 + 2 d 212 E 1 E 2 ) ,
P 3 2 ω = ϵ 0 ( d 311 E 1 2 + d 322 E 2 2 + d 333 E 3 2 + 2 d 313 E 1 E 3 ) ,
r i j k e ( ω ) = 4 n ω , i 2 n ω , j 2 f i ω f j ω f k 0 f k 2 ω f j ω f i ω ( 3 ω e g 2 ω 2 ) ( ω e g 2 ω 2 ) ( ω e g 2 4 ω 2 ) 3 ( ω e g 2 ω 2 ) 2 ω e g 2 × d k i j ( 2 ω , ω , ω ) ,
n ( ω 3 ) ω 3 = n ( ω 1 ) ω 1 + n ( ω 2 ) ω 2 .
P i ω 3 = ϵ 0 i j k d i j k ( ω 3 , ω 1 , ω 2 ) E j ω 1 E k ω 2 ,
P ω 3 = 2 ϵ 0 d eff E ω 1 E ω 2 ,
d eff = i j k d i j k ( ω 3 , ω 1 , ω 2 ) cos ( α i ω 3 ) cos ( α j ω 1 ) cos ( α k ω 2 ) ,

Metrics