Abstract

We investigate active, electrically pumped coupled-resonator optical waveguides (CROWs) in the form of InPInGaAsP Fabry–Perot resonator arrays. We discuss the fabrication of these devices and present measurements of the transmission spectra. The signal-to-noise ratio is found to be a strong function of wavelength and degraded rapidly along the resonator chain away from the input. Our results highlight a number of ingredients toward practical implementations loss-compensated and amplifying CROWs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. K. S. Poon and A. Yariv, "Active coupled-resonator optical waveguides. Gain enhancement and noise," J. Opt. Soc. Am. B 24, 2378-2388 (2007).
  2. J. K. S. Poon, P. Chak, J. M. Choi, and A. Yariv, "Slowing light with Fabry-Perot resonator arrays," J. Opt. Soc. Am. B, submitted for publication.
  3. K. L. Koch, P. J. Corvini, and W. T. Tsang, "Anisotropically etched deep gratings for InP/InGaAsP optical devices," J. Appl. Phys. 62, 3461-3463 (1987).
    [CrossRef]
  4. E. Inamura, Y. Miyamoto, S. Tamura, T. Takasugi, and K. Furuya, "Wet chemical etching for ultrafine periodic structure: rectangular InP corrugations of 70nm pitch and 100nm pitch depth," Jpn. J. Appl. Phys., Part 1 28, 2193-2196 (1989).
    [CrossRef]
  5. H. Namatsu, Y. Takahashi, K. Yamazaki, T. Yamaguchi, M. Nagase, and K. Kurihara, "Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations," J. Vac. Sci. Technol. B 16, 69-76 (1998).
    [CrossRef]
  6. M. Hatzakis, B. J. Canavello, and J. M. Shaw, "Single-step optical lift-off process," IBM J. Res. Dev. 24, 452-460 (1980).
    [CrossRef]
  7. W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor-Laser Physics (Springer, 1997).
  8. T. Mukai and Y. Yamamoto, "Noise in an AlGaAs semiconductor-laser amplifier," IEEE J. Quantum Electron. 18, 564-575 (1982).
    [CrossRef]
  9. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express 12, 90-103 (2004).
    [CrossRef] [PubMed]
  10. D. Botez and D. R. Scifres, Diode Laser Arrays (Cambridge U. Press, 1994).
    [CrossRef]
  11. H. G. Winful, S. Allen, and L. Rahman, "Validity of the coupled-oscillator model for laser-array dynamics," Opt. Lett. 18, 1810-1812 (1993).
    [CrossRef] [PubMed]
  12. A. E. Siegman, Lasers (University Science Books, 1986).
  13. L. Goldberg, H. F. Taylor, J. F. Weller, and D. R. Scifres, "Injection locking of coupled-stripe diode laser arrays," Appl. Phys. Lett. 46, 236-238 (1985).
    [CrossRef]
  14. J. P. Hohimer, A. Owyoung, and G. R. Hadley, "Single-channel injection locking of a diode-laser array with a cw dye laser," Appl. Phys. Lett. 47, 1244-1246 (1985).
    [CrossRef]
  15. B. Bauer, F. Henry, and R. Schimpe, "Gain stabilization of a semiconductor optical amplifier by distributed feedback," IEEE Photon. Technol. Lett. 6, 182-185 (1994).
    [CrossRef]
  16. L. F. Tiemeijer, P. J. A. Thijs, T. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. Vanhelleputte, "Reduced intermodulation distortion in 1300nm gain-clamped MQW laser amplifiers," IEEE Photon. Technol. Lett. 7, 284-286 (1995).
    [CrossRef]
  17. M. Bachmann, P. Doussiere, J. Y. Emery, R. NGo, F. Pommereau, L. Goldstein, G. Soulage, and A. Jourdan, "Polarisation-insensitive clamped-gain SOA with integrated spot-size convertor and DBR gratings for WDM applications at 1.55μm wavelength," Electron. Lett. 32, 2076-2078 (1996).
    [CrossRef]

2007

J. K. S. Poon and A. Yariv, "Active coupled-resonator optical waveguides. Gain enhancement and noise," J. Opt. Soc. Am. B 24, 2378-2388 (2007).

2004

1998

H. Namatsu, Y. Takahashi, K. Yamazaki, T. Yamaguchi, M. Nagase, and K. Kurihara, "Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations," J. Vac. Sci. Technol. B 16, 69-76 (1998).
[CrossRef]

1996

M. Bachmann, P. Doussiere, J. Y. Emery, R. NGo, F. Pommereau, L. Goldstein, G. Soulage, and A. Jourdan, "Polarisation-insensitive clamped-gain SOA with integrated spot-size convertor and DBR gratings for WDM applications at 1.55μm wavelength," Electron. Lett. 32, 2076-2078 (1996).
[CrossRef]

1995

L. F. Tiemeijer, P. J. A. Thijs, T. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. Vanhelleputte, "Reduced intermodulation distortion in 1300nm gain-clamped MQW laser amplifiers," IEEE Photon. Technol. Lett. 7, 284-286 (1995).
[CrossRef]

1994

B. Bauer, F. Henry, and R. Schimpe, "Gain stabilization of a semiconductor optical amplifier by distributed feedback," IEEE Photon. Technol. Lett. 6, 182-185 (1994).
[CrossRef]

1993

1989

E. Inamura, Y. Miyamoto, S. Tamura, T. Takasugi, and K. Furuya, "Wet chemical etching for ultrafine periodic structure: rectangular InP corrugations of 70nm pitch and 100nm pitch depth," Jpn. J. Appl. Phys., Part 1 28, 2193-2196 (1989).
[CrossRef]

1987

K. L. Koch, P. J. Corvini, and W. T. Tsang, "Anisotropically etched deep gratings for InP/InGaAsP optical devices," J. Appl. Phys. 62, 3461-3463 (1987).
[CrossRef]

1985

L. Goldberg, H. F. Taylor, J. F. Weller, and D. R. Scifres, "Injection locking of coupled-stripe diode laser arrays," Appl. Phys. Lett. 46, 236-238 (1985).
[CrossRef]

J. P. Hohimer, A. Owyoung, and G. R. Hadley, "Single-channel injection locking of a diode-laser array with a cw dye laser," Appl. Phys. Lett. 47, 1244-1246 (1985).
[CrossRef]

1982

T. Mukai and Y. Yamamoto, "Noise in an AlGaAs semiconductor-laser amplifier," IEEE J. Quantum Electron. 18, 564-575 (1982).
[CrossRef]

1980

M. Hatzakis, B. J. Canavello, and J. M. Shaw, "Single-step optical lift-off process," IBM J. Res. Dev. 24, 452-460 (1980).
[CrossRef]

Appl. Phys. Lett.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. R. Scifres, "Injection locking of coupled-stripe diode laser arrays," Appl. Phys. Lett. 46, 236-238 (1985).
[CrossRef]

J. P. Hohimer, A. Owyoung, and G. R. Hadley, "Single-channel injection locking of a diode-laser array with a cw dye laser," Appl. Phys. Lett. 47, 1244-1246 (1985).
[CrossRef]

Electron. Lett.

M. Bachmann, P. Doussiere, J. Y. Emery, R. NGo, F. Pommereau, L. Goldstein, G. Soulage, and A. Jourdan, "Polarisation-insensitive clamped-gain SOA with integrated spot-size convertor and DBR gratings for WDM applications at 1.55μm wavelength," Electron. Lett. 32, 2076-2078 (1996).
[CrossRef]

IBM J. Res. Dev.

M. Hatzakis, B. J. Canavello, and J. M. Shaw, "Single-step optical lift-off process," IBM J. Res. Dev. 24, 452-460 (1980).
[CrossRef]

IEEE J. Quantum Electron.

T. Mukai and Y. Yamamoto, "Noise in an AlGaAs semiconductor-laser amplifier," IEEE J. Quantum Electron. 18, 564-575 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Bauer, F. Henry, and R. Schimpe, "Gain stabilization of a semiconductor optical amplifier by distributed feedback," IEEE Photon. Technol. Lett. 6, 182-185 (1994).
[CrossRef]

L. F. Tiemeijer, P. J. A. Thijs, T. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. Vanhelleputte, "Reduced intermodulation distortion in 1300nm gain-clamped MQW laser amplifiers," IEEE Photon. Technol. Lett. 7, 284-286 (1995).
[CrossRef]

J. Appl. Phys.

K. L. Koch, P. J. Corvini, and W. T. Tsang, "Anisotropically etched deep gratings for InP/InGaAsP optical devices," J. Appl. Phys. 62, 3461-3463 (1987).
[CrossRef]

J. Vac. Sci. Technol. B

H. Namatsu, Y. Takahashi, K. Yamazaki, T. Yamaguchi, M. Nagase, and K. Kurihara, "Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations," J. Vac. Sci. Technol. B 16, 69-76 (1998).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

E. Inamura, Y. Miyamoto, S. Tamura, T. Takasugi, and K. Furuya, "Wet chemical etching for ultrafine periodic structure: rectangular InP corrugations of 70nm pitch and 100nm pitch depth," Jpn. J. Appl. Phys., Part 1 28, 2193-2196 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Other

D. Botez and D. R. Scifres, Diode Laser Arrays (Cambridge U. Press, 1994).
[CrossRef]

J. K. S. Poon and A. Yariv, "Active coupled-resonator optical waveguides. Gain enhancement and noise," J. Opt. Soc. Am. B 24, 2378-2388 (2007).

J. K. S. Poon, P. Chak, J. M. Choi, and A. Yariv, "Slowing light with Fabry-Perot resonator arrays," J. Opt. Soc. Am. B, submitted for publication.

A. E. Siegman, Lasers (University Science Books, 1986).

W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor-Laser Physics (Springer, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the Fabry–Perot resonator array CROW.

Fig. 2
Fig. 2

Schematic of the wafer structure.

Fig. 3
Fig. 3

Summary of the fabrication process.

Fig. 4
Fig. 4

Scanning electron micrographs of (a) the top view of the FOx overlay that backfilled the trenches and (b) the cross section of a completed device.

Fig. 5
Fig. 5

Schematic of the experimental setup. SPA is the semiconductor parameter analyzer and OSA is the optical spectrum analyzer.

Fig. 6
Fig. 6

(a) Subthreshold near-field image; (b) a typical optical power versus injection current curve.

Fig. 7
Fig. 7

Theoretically calculated transmission spectra for (a) κ l = 1.1 × 10 3 μ m 1 and (b) κ l = 0.9 × 10 3 μ m 1 , and the measured transmission spectra, less the spontaneous emission background, at a current amplitude of 280 mA for an array with inter-resonator spacings of (c) 800 nm and (d) 900 nm .

Fig. 8
Fig. 8

Top row: theoretical (a) transmission and (b) group delay, as well as (c)–(e) experimentally measured transmission spectra at various resonators and injection current amplitudes for an array with an inter-resonator spacing of 800 nm . Bottom row (f)–(j) the same for an array with an inter-resonator spacing of 900 nm .

Fig. 9
Fig. 9

SNR opt as a function of wavelength and resonator position of an array with a transmission spectrum shown in Fig. 8d.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR opt = Output Power with the Input Output Power without the Input 1 ,

Metrics