Abstract

Localization of light in a basic multiple photonic quantum well system (MPQWS) is investigated with the finite-difference time-domain method. Resonance tunneling and splitting are observed in a MPQWS, as electron waves to a superlattice. Our numerical results reveal a quite interesting hierarchic distribution of the field mode when the system is illuminated with plane waves at a specific frequency. That is, if the number of wells is odd (even), strong localized states occur in odd (even) indexed wells. Light localization in a MPQWS, however, seems to be confined only in a narrow incident frequency window.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [Crossref] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [Crossref] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [Crossref] [PubMed]
  5. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
    [Crossref] [PubMed]
  6. A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
    [Crossref] [PubMed]
  7. S. Y. Lin and G. Arjavalingam, "Photonic bound states in two-dimensional photonic crystals probed by coherent-microwave transient spectroscopy," J. Opt. Soc. Am. B 11, 2124-2127 (1994).
    [Crossref]
  8. Y. Jiang, C. Niu, and D. L. Lin, "Resonance tunneling through photonic quantum wells," Phys. Rev. B 59, 9981-9986 (1999).
    [Crossref]
  9. F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
    [Crossref]
  10. T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
    [Crossref]
  11. Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, "Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results," Phys. Rev. B 74, 035314 (2006).
    [Crossref]
  12. D. B. Ge and Y. B. Yan, Finite-Difference Time-Domain Method for Electromagnetic Waves, 2nd ed. (Xidian U. Press, 2005).
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  14. J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection laser arrays," Appl. Phys. Lett. 44, 293-295 (1984).
    [Crossref]
  15. W. Ding, L. Chen, and S. Liu, "Localization properties and the effects on multi-mode switching in discrete mode CCWs," Opt. Commun. 248, 479-484 (2005).
    [Crossref]
  16. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
    [Crossref]
  17. G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat. 23, 377-382 (1981).
    [Crossref]
  18. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
    [Crossref]
  19. R. Tsu and L. Esaki, "Tunneling in a finite superlattice," Appl. Phys. Lett. 22, 562-564 (1973).
    [Crossref]
  20. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
    [Crossref]

2006 (3)

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[Crossref] [PubMed]

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
[Crossref]

Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, "Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results," Phys. Rev. B 74, 035314 (2006).
[Crossref]

2005 (4)

D. B. Ge and Y. B. Yan, Finite-Difference Time-Domain Method for Electromagnetic Waves, 2nd ed. (Xidian U. Press, 2005).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

W. Ding, L. Chen, and S. Liu, "Localization properties and the effects on multi-mode switching in discrete mode CCWs," Opt. Commun. 248, 479-484 (2005).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[Crossref] [PubMed]

2000 (2)

F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
[Crossref]

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
[Crossref]

1999 (2)

Y. Jiang, C. Niu, and D. L. Lin, "Resonance tunneling through photonic quantum wells," Phys. Rev. B 59, 9981-9986 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[Crossref] [PubMed]

1996 (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[Crossref]

1995 (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

1994 (2)

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[Crossref] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[Crossref] [PubMed]

1984 (1)

J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection laser arrays," Appl. Phys. Lett. 44, 293-295 (1984).
[Crossref]

1981 (1)

G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat. 23, 377-382 (1981).
[Crossref]

1973 (1)

R. Tsu and L. Esaki, "Tunneling in a finite superlattice," Appl. Phys. Lett. 22, 562-564 (1973).
[Crossref]

Ackley, D. E.

J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection laser arrays," Appl. Phys. Lett. 44, 293-295 (1984).
[Crossref]

Akjouj, A.

Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, "Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results," Phys. Rev. B 74, 035314 (2006).
[Crossref]

Arjavalingam, G.

Aynaou, H.

Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, "Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results," Phys. Rev. B 74, 035314 (2006).
[Crossref]

Berenger, J. P.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[Crossref]

Botez, D.

J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection laser arrays," Appl. Phys. Lett. 44, 293-295 (1984).
[Crossref]

Buchler, B. C.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[Crossref] [PubMed]

Butler, J. K.

J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection laser arrays," Appl. Phys. Lett. 44, 293-295 (1984).
[Crossref]

Cao, H.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[Crossref] [PubMed]

Chang, R. P. H.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[Crossref] [PubMed]

Chen, L.

W. Ding, L. Chen, and S. Liu, "Localization properties and the effects on multi-mode switching in discrete mode CCWs," Opt. Commun. 248, 479-484 (2005).
[Crossref]

Christ, A.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
[Crossref]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[Crossref] [PubMed]

Ding, W.

W. Ding, L. Chen, and S. Liu, "Localization properties and the effects on multi-mode switching in discrete mode CCWs," Opt. Commun. 248, 479-484 (2005).
[Crossref]

Djafari-Rouhani, B.

Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, "Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results," Phys. Rev. B 74, 035314 (2006).
[Crossref]

El Boudouti, E. H.

Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, "Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results," Phys. Rev. B 74, 035314 (2006).
[Crossref]

El Hassouani, Y.

Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, "Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results," Phys. Rev. B 74, 035314 (2006).
[Crossref]

Esaki, L.

R. Tsu and L. Esaki, "Tunneling in a finite superlattice," Appl. Phys. Lett. 22, 562-564 (1973).
[Crossref]

Fan, S.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[Crossref]

Ge, D. B.

D. B. Ge and Y. B. Yan, Finite-Difference Time-Domain Method for Electromagnetic Waves, 2nd ed. (Xidian U. Press, 2005).

Giessen, H.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
[Crossref]

Gippius, N. A.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Jiang, Y.

Y. Jiang, C. Niu, and D. L. Lin, "Resonance tunneling through photonic quantum wells," Phys. Rev. B 59, 9981-9986 (1999).
[Crossref]

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[Crossref] [PubMed]

Kafesaki, M.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[Crossref] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[Crossref] [PubMed]

Kuhl, J.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
[Crossref]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[Crossref] [PubMed]

Lin, D. L.

Y. Jiang, C. Niu, and D. L. Lin, "Resonance tunneling through photonic quantum wells," Phys. Rev. B 59, 9981-9986 (1999).
[Crossref]

Lin, S. Y.

Liu, S.

W. Ding, L. Chen, and S. Liu, "Localization properties and the effects on multi-mode switching in discrete mode CCWs," Opt. Commun. 248, 479-484 (2005).
[Crossref]

Liu, X.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[Crossref] [PubMed]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Mur, G.

G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat. 23, 377-382 (1981).
[Crossref]

Nau, D.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
[Crossref]

Niu, C.

Y. Jiang, C. Niu, and D. L. Lin, "Resonance tunneling through photonic quantum wells," Phys. Rev. B 59, 9981-9986 (1999).
[Crossref]

O'Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[Crossref] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[Crossref] [PubMed]

Qiao, F.

F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
[Crossref]

Sandoghdar, V.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[Crossref] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[Crossref] [PubMed]

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tikhodeev, S. G.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
[Crossref]

Tsu, R.

R. Tsu and L. Esaki, "Tunneling in a finite superlattice," Appl. Phys. Lett. 22, 562-564 (1973).
[Crossref]

Velasco, V. R.

Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, "Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results," Phys. Rev. B 74, 035314 (2006).
[Crossref]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[Crossref]

Wan, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Wu, X.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[Crossref] [PubMed]

Yamilov, A.

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[Crossref] [PubMed]

Yan, Y. B.

D. B. Ge and Y. B. Yan, Finite-Difference Time-Domain Method for Electromagnetic Waves, 2nd ed. (Xidian U. Press, 2005).

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[Crossref] [PubMed]

Zentgraf, T.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
[Crossref]

Zhang, C.

F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
[Crossref]

Zi, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
[Crossref]

Appl. Phys. Lett. (3)

F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
[Crossref]

J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection laser arrays," Appl. Phys. Lett. 44, 293-295 (1984).
[Crossref]

R. Tsu and L. Esaki, "Tunneling in a finite superlattice," Appl. Phys. Lett. 22, 562-564 (1973).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat. 23, 377-382 (1981).
[Crossref]

J. Comput. Phys. (1)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. Ding, L. Chen, and S. Liu, "Localization properties and the effects on multi-mode switching in discrete mode CCWs," Opt. Commun. 248, 479-484 (2005).
[Crossref]

Phys. Rev. B (4)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[Crossref]

Y. Jiang, C. Niu, and D. L. Lin, "Resonance tunneling through photonic quantum wells," Phys. Rev. B 59, 9981-9986 (1999).
[Crossref]

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, "Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties," Phys. Rev. B 73, 115103 (2006).
[Crossref]

Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, "Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results," Phys. Rev. B 74, 035314 (2006).
[Crossref]

Phys. Rev. Lett. (4)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[Crossref] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[Crossref] [PubMed]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[Crossref] [PubMed]

A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006).
[Crossref] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[Crossref] [PubMed]

Other (4)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

D. B. Ge and Y. B. Yan, Finite-Difference Time-Domain Method for Electromagnetic Waves, 2nd ed. (Xidian U. Press, 2005).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of photonic analog of electrons [(a) and (b)], and the two types of MPQWSs for simulation [(c) and (d)] are shown; (a) dynamic localization of light at resonance frequency; (b) dynamic localization of electrons in resonance tunneling (one-dimensional case); (c) y-infinite MPQWS; and (d) y-finite MPQWS. In (c) and (d), the dielectric columns have a radius of r = 0.2 a and a dielectric constant of ϵ = 8.9 . Plane waves are emitted from the connective boundary.

Fig. 2
Fig. 2

Resonance splitting effect at frequency ω = 0.408 ( 2 π c a ) with increasing numbers of barriers in the y-infinite system is shown. Here n is the number of wells (hence the number of barriers is n + 1 ).

Fig. 3
Fig. 3

Field distribution E z for the y-infinite MPQWS is shown, where n is the number of wells. All cases are normalized with the maximum E z of the n = 5 case.

Fig. 4
Fig. 4

(a) Transmission spectra of the y-finite MPQWS with 13 [solid (blue) curve] and 14 [dashed–dotted (green) curve] rows of dielectric columns for n = 5 , 6 , 7 wells are depicted. Along with them is a background case of the y-infinite MPQWS [dashed (red) curve] to mark the shift of resonance frequencies. All cases have a fixed well width of 3.4 a . The maximum magnitude of the spectra of the 14-row case for n = 5 [the dashed–dotted (green) curve in the bottom subfigure] is used to normalize the intensities for all y-finite cases; (b) transmission spectra of the y-finite MPQWS with 13 rows of dielectric columns for three different well widths of 3.3 a [dashed–dotted (green) curve], 3.4 a [solid (blue) curve], 3.5 a [dashed (red) curve] for n = 5 , 6 , 7 wells are depicted. All intensities are normalized with the maximum magnitude of the spectra of the case having a well width of 3.3 a for n = 6 [the dashed–dotted (green) curve in the middle subfigure]. These two plots (a) and (b), respectively, illustrate the size effect along the y and x directions.

Fig. 5
Fig. 5

Field distribution E z for the y-finite MPQWS is shown, where n is the number of wells. E z is normalized with the maximum E z of the n = 5 case in Fig. 3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E z L ( x , y ) = m = 1 N sin ( m θ L ) v m ( y ) exp ( ( γ + γ L ) x ) ,

Metrics