P. Kinsler, S. B. P. Radnor, J. C. A. Tyrrell, and G. H. C. New, "Optical carrier wave shocking: detection and dispersion," Phys. Rev. E 75, 066603 (2007).

[CrossRef]

G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, "Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides," Opt. Express 15, 5382-5387 (2007).

[CrossRef]
[PubMed]

P. Kinsler, S. B. P. Radnor, and G. H. C. New, "Theory of directional pulse propagation," Phys. Rev. A 72, 063807 (2005).

[CrossRef]

J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, "Pseudospectral spatial-domain: A new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion," J. Mod. Opt. 52, 973-986 (2005).

[CrossRef]

A. Ferrando, M. Zacarés, P. F. de Córdoba, D. Binosi, and Á. Montero, "Forward-backward equations for nonlinear propagation in axially invariant optical systems," Phys. Rev. E 71, 016601 (2005).

[CrossRef]

M. Kolesik, J. V. Moloney, and M. Mlejnek, "Unidirectional optical pulse propagation equation," Phys. Rev. Lett. 89, 283902 (2002).

[CrossRef]

Y. J. Ding, J. U. Kang, and J. B. Khurgin, "Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second-order nonlinear medium," IEEE J. Quantum Electron. 34, 966-974 (1998).

[CrossRef]

Y. J. Ding and J. B. Khurgin, "Backward optical parametric oscillators and amplifiers," IEEE J. Quantum Electron. 32, 1574-1582 (1996).

[CrossRef]

L. W. Casperson, "Field-equation approximations and amplification in high-gain lasers: numerical results," Phys. Rev. A 44, 3291-3304 (1991).

[CrossRef]
[PubMed]

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).

[CrossRef]

S. E. Harris, "Proposed backward wave oscillation in the infrared," Appl. Phys. Lett. 9, 114-116 (1966).

[CrossRef]

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).

[CrossRef]

G. Rosen, "Electromagnetic shocks and the self-annihilation of intense linearly polarized radiation in an ideal dielectric material," Phys. Rev. A 139, A539-A543 (1965).

S. E. Harris, "Proposed backward wave oscillation in the infrared," Appl. Phys. Lett. 9, 114-116 (1966).

[CrossRef]

Y. J. Ding and J. B. Khurgin, "Backward optical parametric oscillators and amplifiers," IEEE J. Quantum Electron. 32, 1574-1582 (1996).

[CrossRef]

Y. J. Ding, J. U. Kang, and J. B. Khurgin, "Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second-order nonlinear medium," IEEE J. Quantum Electron. 34, 966-974 (1998).

[CrossRef]

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).

[CrossRef]

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).

[CrossRef]

J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, "Pseudospectral spatial-domain: A new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion," J. Mod. Opt. 52, 973-986 (2005).

[CrossRef]

S. B. P. Radnor, L. E. Chipperfield, P. Kinsler, and G. H. C. New, "Carrier wave self-steepening and application to high harmonic generation," submitted to Phys. Rev. A .

L. W. Casperson, "Field-equation approximations and amplification in high-gain lasers: numerical results," Phys. Rev. A 44, 3291-3304 (1991).

[CrossRef]
[PubMed]

P. Kinsler and G. H. C. New, "Few cycle pulse propagation," Phys. Rev. A 67, 023813 (2003).

[CrossRef]

P. Kinsler, S. B. P. Radnor, and G. H. C. New, "Theory of directional pulse propagation," Phys. Rev. A 72, 063807 (2005).

[CrossRef]

G. Rosen, "Electromagnetic shocks and the self-annihilation of intense linearly polarized radiation in an ideal dielectric material," Phys. Rev. A 139, A539-A543 (1965).

A. Ferrando, M. Zacarés, P. F. de Córdoba, D. Binosi, and Á. Montero, "Forward-backward equations for nonlinear propagation in axially invariant optical systems," Phys. Rev. E 71, 016601 (2005).

[CrossRef]

P. Kinsler, S. B. P. Radnor, J. C. A. Tyrrell, and G. H. C. New, "Optical carrier wave shocking: detection and dispersion," Phys. Rev. E 75, 066603 (2007).

[CrossRef]

M. Kolesik, J. V. Moloney, and M. Mlejnek, "Unidirectional optical pulse propagation equation," Phys. Rev. Lett. 89, 283902 (2002).

[CrossRef]

T. Brabec and F. Krausz, "Nonlinear optical pulse propagation in the single-cycle regime," Phys. Rev. Lett. 78, 3282-3285 (1997).

[CrossRef]

G. B. Whitham, Lectures on Wave Propagation (Wiley, 1979).

S. B. P. Radnor (Department of Physics, Imperial College London, London, personal communication, 2006).

P. Kinsler, "Pulse propagation methods in nonlinear optics," arXiv:0707.0982.

P. Kinsler, "Theory of directional pulse propagation: detailed calculations," arXiv:physics/0611216.

If the forward field has a wave vector k0 and evolves as exp(+ik0z), the generated backward component will evolve as exp(−ik0z). This gives a very rapid relative oscillation exp(−2ik0z), which will quickly average to zero.