Abstract

The fractional thermal loading in a laser-diode-pumped erbium-ytterbium-codoped phosphate glass microchip laser is an important parameter. We have developed two methods to determine the fractional thermal loading when the laser is operating on fundamental mode. By measuring far-field divergence angles, the thermal focal length and the fractional thermal loading of a microchip TEM00 laser with a short cavity length can be calculated. The fractional thermal loading is also obtained through numerical calculations of rate equations with the consideration of upconversion processes. The results of these two methods are in good agreement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. O. Ramírez, D. Jaque, and L. E. Bausá, "Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers," Appl. Phys. Lett. 89, 091122-1-091122-3 (2006).
    [CrossRef]
  2. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217-1234 (2004).
    [CrossRef]
  3. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
    [CrossRef]
  4. F. Song, C. Zhang, X. Ding, J. Xu, and G. Zhang, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
    [CrossRef]
  5. Y. P. Lan, Y. F. Chen, and S. C. Wang, "Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers: influence of energy-transfer upconversion," Appl. Phys. B: Photophys. Laser Chem. 71, 27-31 (2000).
    [CrossRef]
  6. B. Ozygus and Q. Zhang, "Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes," Appl. Phys. Lett. 71, 2590-2592 (1997).
    [CrossRef]
  7. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and G. Sacchi, "Diode-pumped microchip Er-Yb:glass laser," Opt. Lett. 18, 1232-1234 (1993).
    [CrossRef] [PubMed]
  8. S. Taccheo, P. Laporta, S. Longhi, and C. Svelto, "Experimental-analysis and theoretical modeling of a diode-pumped Er:Yb:glass microchip laser," Opt. Lett. 20, 889-891 (1995).
    [CrossRef] [PubMed]
  9. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, "Erbium-ytterbium microlasers: optical properties and lasing characteristics," Opt. Mater. 11, 269-288 (1999).
    [CrossRef]
  10. T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano, "11-mJ, 15-Hz single-frequency diode-pumped Q-switched Er, Yb:phosphate glass laser," Opt. Lett. 26, 1262-1264 (2001).
    [CrossRef]
  11. J. Zhou, F. Moshary, B. M. Gross, M. F. Arend, and S. A. Ahmed, "Population dynamics of Yb3+, Er3+ co-doped phosphate glass," J. Appl. Phys. 96, 237-241 (2004).
    [CrossRef]
  12. Y. F. Chen, T. M. Huang, and C. E. Kao, "Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect," IEEE J. Quantum Electron. 33, 1424-1429 (1997).
    [CrossRef]
  13. F. Song, X. Zhang, Y. Wu, S. Liu, F. Zhou, B. Qin, J. Tian, J. Xu, and G. Zhang, "Simplified transformation circle theory in analyzing a laser resonator," Appl. Opt. 46, 2492-2497 (2007).
    [CrossRef] [PubMed]
  14. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, "Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals," IEEE J. Quantum Electron. 35, 647-655 (1999).
    [CrossRef]
  15. B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995).
    [CrossRef]
  16. S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, "Scaling CW diode-end-pumped Nd:YAG lasers to high average powers," IEEE J. Quantum Electron. 28, 997-1009 (1992).
    [CrossRef]
  17. S. Jiang, J. D. Myers, D. L. Rhonehouse, M. J. Myers, R. E. Belford, and S. J. Hamlin, "Laser and thermal performance of a new erbium-doped phosphate laser glass," in Longer Wavelength Lasers and Applications, G.Patonay, ed., Proc. SPIE 2138, 166-174 (1994).
  18. S. Bjurshagen and R. Koch, "Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers," Appl. Opt. 43, 4753-4767 (2004).
    [CrossRef] [PubMed]
  19. Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, "Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers," IEEE J. Sel. Top. Quantum Electron. 3, 29-34 (1997).
    [CrossRef]
  20. W. Koechner, Solid-State Laser Engineering, Springer Series in Optical Science, D.L.MacAdam, ed. (Springer-Verlag, 1976), pp. 353-354.
  21. NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc553.htm.
  22. Z. H. Wu, F. Song, S. J. Liu, B. Qin, J. Su, J. G. Tian, and D. Y. Zhang, "Influence of upconversion effects on Er3+, Yb3+ co-doped phosphate glass lasers," Acta Phys. Sin. 54, 5637-5641 (2005).
  23. F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, "Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass," Appl. Phys. Lett. 79, 1748 -1750 (2001).
    [CrossRef]
  24. S. Jiang, J. D. Myers, R. Wu, G. M. Bishop, D. L. Rhonehouse, M. J. Myers, and S. J. Hamlin, "Chemically stregthened Er3+, Nd3+ doped phosphate laser glasses," in Solid State Lasers and Nonlinear Crystals, G.J.Quarles, L.Esterowitz, and L.K.Cheng, eds., Proc. SPIE 2379, 17 (1995).
  25. B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er3+ and Yb3+-Er3+-doped phosphate glasses," J. Opt. Soc. Am. B 17, 833-839 (2000).
    [CrossRef]
  26. Y. F. Chen, "Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers," J. Opt. Soc. Am. B 17, 1835-1840 (2000).
    [CrossRef]

2007

2006

M. O. Ramírez, D. Jaque, and L. E. Bausá, "Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers," Appl. Phys. Lett. 89, 091122-1-091122-3 (2006).
[CrossRef]

2005

Z. H. Wu, F. Song, S. J. Liu, B. Qin, J. Su, J. G. Tian, and D. Y. Zhang, "Influence of upconversion effects on Er3+, Yb3+ co-doped phosphate glass lasers," Acta Phys. Sin. 54, 5637-5641 (2005).

2004

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217-1234 (2004).
[CrossRef]

J. Zhou, F. Moshary, B. M. Gross, M. F. Arend, and S. A. Ahmed, "Population dynamics of Yb3+, Er3+ co-doped phosphate glass," J. Appl. Phys. 96, 237-241 (2004).
[CrossRef]

S. Bjurshagen and R. Koch, "Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers," Appl. Opt. 43, 4753-4767 (2004).
[CrossRef] [PubMed]

2002

F. Song, C. Zhang, X. Ding, J. Xu, and G. Zhang, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

2001

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, "Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass," Appl. Phys. Lett. 79, 1748 -1750 (2001).
[CrossRef]

T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano, "11-mJ, 15-Hz single-frequency diode-pumped Q-switched Er, Yb:phosphate glass laser," Opt. Lett. 26, 1262-1264 (2001).
[CrossRef]

2000

1999

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, "Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals," IEEE J. Quantum Electron. 35, 647-655 (1999).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, "Erbium-ytterbium microlasers: optical properties and lasing characteristics," Opt. Mater. 11, 269-288 (1999).
[CrossRef]

1997

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, "Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers," IEEE J. Sel. Top. Quantum Electron. 3, 29-34 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, and C. E. Kao, "Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect," IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

B. Ozygus and Q. Zhang, "Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes," Appl. Phys. Lett. 71, 2590-2592 (1997).
[CrossRef]

1995

B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, and C. Svelto, "Experimental-analysis and theoretical modeling of a diode-pumped Er:Yb:glass microchip laser," Opt. Lett. 20, 889-891 (1995).
[CrossRef] [PubMed]

1993

1992

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, "Scaling CW diode-end-pumped Nd:YAG lasers to high average powers," IEEE J. Quantum Electron. 28, 997-1009 (1992).
[CrossRef]

1990

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Acta Phys. Sin.

Z. H. Wu, F. Song, S. J. Liu, B. Qin, J. Su, J. G. Tian, and D. Y. Zhang, "Influence of upconversion effects on Er3+, Yb3+ co-doped phosphate glass lasers," Acta Phys. Sin. 54, 5637-5641 (2005).

Appl. Opt.

Appl. Phys. B: Photophys. Laser Chem.

Y. P. Lan, Y. F. Chen, and S. C. Wang, "Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers: influence of energy-transfer upconversion," Appl. Phys. B: Photophys. Laser Chem. 71, 27-31 (2000).
[CrossRef]

Appl. Phys. Lett.

B. Ozygus and Q. Zhang, "Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes," Appl. Phys. Lett. 71, 2590-2592 (1997).
[CrossRef]

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, "Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass," Appl. Phys. Lett. 79, 1748 -1750 (2001).
[CrossRef]

M. O. Ramírez, D. Jaque, and L. E. Bausá, "Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers," Appl. Phys. Lett. 89, 091122-1-091122-3 (2006).
[CrossRef]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

F. Song, C. Zhang, X. Ding, J. Xu, and G. Zhang, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

IEEE J. Quantum Electron.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217-1234 (2004).
[CrossRef]

Y. F. Chen, T. M. Huang, and C. E. Kao, "Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect," IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, "Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals," IEEE J. Quantum Electron. 35, 647-655 (1999).
[CrossRef]

B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995).
[CrossRef]

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, "Scaling CW diode-end-pumped Nd:YAG lasers to high average powers," IEEE J. Quantum Electron. 28, 997-1009 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, "Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers," IEEE J. Sel. Top. Quantum Electron. 3, 29-34 (1997).
[CrossRef]

J. Appl. Phys.

J. Zhou, F. Moshary, B. M. Gross, M. F. Arend, and S. A. Ahmed, "Population dynamics of Yb3+, Er3+ co-doped phosphate glass," J. Appl. Phys. 96, 237-241 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Mater.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, "Erbium-ytterbium microlasers: optical properties and lasing characteristics," Opt. Mater. 11, 269-288 (1999).
[CrossRef]

Other

W. Koechner, Solid-State Laser Engineering, Springer Series in Optical Science, D.L.MacAdam, ed. (Springer-Verlag, 1976), pp. 353-354.

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc553.htm.

S. Jiang, J. D. Myers, R. Wu, G. M. Bishop, D. L. Rhonehouse, M. J. Myers, and S. J. Hamlin, "Chemically stregthened Er3+, Nd3+ doped phosphate laser glasses," in Solid State Lasers and Nonlinear Crystals, G.J.Quarles, L.Esterowitz, and L.K.Cheng, eds., Proc. SPIE 2379, 17 (1995).

S. Jiang, J. D. Myers, D. L. Rhonehouse, M. J. Myers, R. E. Belford, and S. J. Hamlin, "Laser and thermal performance of a new erbium-doped phosphate laser glass," in Longer Wavelength Lasers and Applications, G.Patonay, ed., Proc. SPIE 2138, 166-174 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experiment setup for measuring the thermal focal length.

Fig. 2
Fig. 2

Laser power versus pump power for experimental and theoretical pumping.

Fig. 3
Fig. 3

Thermal focal length dependence on absorbed pump power.

Fig. 4
Fig. 4

Dependence of the fractional thermal loading on the laser power: (a) The results calculated from measuring the thermal focal length with error bars; (b) the comparison between the results of the two methods.

Fig. 5
Fig. 5

Energy-level scheme and energy-level transition of the Er 3 + Yb 3 + codoped system: P, pump photon absorption; k 1 , direct Yb–Er energy transfer; N, the fast nonradiative relaxations immediately following the direct energy transfer; S, spontaneous emission; k 2 , cumulative upconversion; C, cooperative upconversion; w i , nonradiative relaxations from the upconversion energy levels; F, fluorescence processes L, 1.54 μ m laser emission.

Tables (3)

Tables Icon

Table 1 Values of M 2 for Different Pump Power

Tables Icon

Table 2 Parameters Used in the Calculation of Thermal Loading

Tables Icon

Table 3 Nonradiative Transition Rate and Total Spontaneous Radiative Transitions Rate of Er 3 + Ion Upconversion Energy Levels in Er–Yb-Codoped Phosphate Glass

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

θ 0 = ω ( z 2 ) ω ( z 1 ) z 2 z 1 .
θ 0 4 = ( λ π ω 0 ) 4 = ( λ π ) 2 ( f t + R 2 L ) 2 ( f t L ) ( R L ) ( f t + R L ) L ,
M 2 = ω 0 θ 0 π λ .
f t = 2 π K c ω p 2 ξ P abs 1 d n 0 d T + ( n 0 1 ) ( 1 + υ ) α T + n 0 3 α T C r ,
ξ = 2 π K c ω p 2 f t P abs 1 d n 0 d T + ( n 0 1 ) ( 1 + υ ) α T .
d N 2 y d t = σ y N y Φ p k 1 N 2 y N 1 e k 2 N 2 y N 2 e N 2 y γ y = 0 ,
d N 2 e d t = N 3 e A w 32 k 2 N 2 y N 2 e N c 0 n σ e ϕ 1 N 2 e γ e 2 C N 2 e 2 = 0 ,
d N 3 e d t = k 1 N 2 y N 1 e N 3 e A w 32 + N 4 e A w 43 = 0 ,
d N 4 e d t = C N 2 e 2 + N 5 e A w 54 N 4 e A w 43 = 0 ,
d N 5 e d t = k 2 N 2 y N 2 e N 5 e A w 54 = 0 ,
d Φ d t = σ e c 0 n v N ( r ) ϕ 1 ( r ) d V Φ τ = 0 ,
τ c = 2 [ L + ( n 1 ) l ] c 0 [ ln ( 1 R ) + δ ] ,
ϕ ( r ) = 2 n π ω 0 2 l exp ( 2 r 2 ω 0 2 ) Φ ,
φ p ( r ) = W p W = 2 α p exp ( α p z ) π ω p 2 [ 1 exp ( α l ) ] exp [ 2 ( r 2 ω p 2 ) ] exp ( α z ) ,
P p = W h ν p α 1 e α l ,
P out = ( 1 R ) h ν e c 0 Φ 2 l .
η = P in P inc P in .
ξ = η + ( 1 η ) ( 1 ν e ν p ) .

Metrics