Abstract

We present an interpretation that differs from an accepted explanation for resonance excitation of surface plasmons (SPs) on a metal using an attenuated total reflection (ATR) method. The metal ATR phenomenon is well expressed in terms of wave optics and accompanies an enhanced evanescent field. The ATR curves and the electric field and absorption distributions in the film layer for the noble metals are simulated numerically using electromagnetic wave analysis. The calculation results provide interpretation that the ATR dips are caused by an absorption loss of the metals produced by enhanced electric fields rather than the energy loss of a transfer excitation to the SPs: the damping loss converted into the SPs or the damping absorption of the once-converted propagation SPs. The sharp ATR dips do not necessarily demonstrate the high-resonance excitations of the SPs, and the metal ATR phenomenon is not restricted to the SPR.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V.M.Agranovich and D.L.Mills, eds., Surface Polaritons (North-Holland, 1982).
  2. A.D.Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  3. S.Kawata, ed., Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
    [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  5. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, 1980).
  6. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total refelction," Z. Phys. 216, 398-410 (1968).
    [CrossRef]
  7. E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).
  8. A. Otto, "Spectroscopy of surface polaritons by attenuated total reflection," in Optical Properties of Solds, New Developments, B.O.Seraphin, ed. (North-Holland, 1976), pp. 677-727.
  9. B. Rothenhäussler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
    [CrossRef]
  10. A. Baba and W. Knoll, "Properties of poly(3,4-ethlenedioxythiophene) ultrathin films detected by in situ electrochemical-surface plasmon field-enhanced photoluminescense spectroscopy," J. Phys. Chem. B 107, 7733-7738 (2003).
    [CrossRef]
  11. F. Caruso, M. J. Jory, G. W. Bradberry, J. R. Sambles, and D. N. Furlong, "Acousto-optic surface-plasmon resonance measurements of thin films on gold," J. Appl. Phys. 82, 1023-1028 (1998).
    [CrossRef]
  12. T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf., A 171, 115-130 (2000).
    [CrossRef]
  13. J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982).
    [CrossRef]
  14. T. Wakamatsu, K. Saito, Y. Sakakibara, and H. Yokoyama, "Surface plasmon-enhanced photocurrent in organic photoelectric cells," Jpn. J. Appl. Phys., Part 1 36, 155-158 (1997).
    [CrossRef]
  15. I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, and I. R. Peterson, "Surface plasmon enhanced SHG from a hemicyanine monolayer," J. Phys. D 19, 2065-2075 (1986).
    [CrossRef]
  16. K. Kurosawa, R. M. Pierce, and S. Ushioda, "Raman scattering and attenuated-total-reflection studies of surface plasmon polaritons," Phys. Rev. B 33, 789-798 (1986).
    [CrossRef]
  17. V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, "Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection," Opt. Commun. 69, 379-383 (1989).
    [CrossRef]
  18. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994).
    [CrossRef] [PubMed]
  19. T. Wakamatsu, T. Nakano, K. Shinbo, K. Kato, and F. Kaneko, "Detection of surface-plasmon evanescent fields using a metallic probe tip covered with fluorescence," Rev. Sci. Instrum. 70, 3962-3966 (1999).
    [CrossRef]
  20. T. Wakamatsu and K. Aizawa, "Penetration-depth characteristics of evanescent fields at metal attenuated total reflection," Jpn. J. Appl. Phys., Part 1 44, 4272-4274 (2005).
    [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).
  22. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  23. T. Kume, S. Hayashi, and K. Yamamoto, "Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation," Jpn. J. Appl. Phys., Part 1 32, 3486-3492 (1993).
    [CrossRef]
  24. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).
    [CrossRef] [PubMed]
  26. W. P. Chen and J. M. Chen, "Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films," J. Opt. Soc. Am. 71, 189-191 (1981).
    [CrossRef]
  27. M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
    [CrossRef]
  28. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1983).
  29. M. Akimoto and Y. Gekka, "Brewster and pseudo-Brewster angle technique for determination of optical constants," Jpn. J. Appl. Phys., Part 1 31, 120-122 (1992).
    [CrossRef]
  30. H. Günzler and H.-U. Gremlich, IR Spectroscopy: an Introduction (Wiley-VCH, 2002).

2005 (1)

T. Wakamatsu and K. Aizawa, "Penetration-depth characteristics of evanescent fields at metal attenuated total reflection," Jpn. J. Appl. Phys., Part 1 44, 4272-4274 (2005).
[CrossRef]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

A. Baba and W. Knoll, "Properties of poly(3,4-ethlenedioxythiophene) ultrathin films detected by in situ electrochemical-surface plasmon field-enhanced photoluminescense spectroscopy," J. Phys. Chem. B 107, 7733-7738 (2003).
[CrossRef]

2000 (1)

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf., A 171, 115-130 (2000).
[CrossRef]

1999 (1)

T. Wakamatsu, T. Nakano, K. Shinbo, K. Kato, and F. Kaneko, "Detection of surface-plasmon evanescent fields using a metallic probe tip covered with fluorescence," Rev. Sci. Instrum. 70, 3962-3966 (1999).
[CrossRef]

1998 (1)

F. Caruso, M. J. Jory, G. W. Bradberry, J. R. Sambles, and D. N. Furlong, "Acousto-optic surface-plasmon resonance measurements of thin films on gold," J. Appl. Phys. 82, 1023-1028 (1998).
[CrossRef]

1997 (1)

T. Wakamatsu, K. Saito, Y. Sakakibara, and H. Yokoyama, "Surface plasmon-enhanced photocurrent in organic photoelectric cells," Jpn. J. Appl. Phys., Part 1 36, 155-158 (1997).
[CrossRef]

1994 (1)

1993 (1)

T. Kume, S. Hayashi, and K. Yamamoto, "Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation," Jpn. J. Appl. Phys., Part 1 32, 3486-3492 (1993).
[CrossRef]

1992 (1)

M. Akimoto and Y. Gekka, "Brewster and pseudo-Brewster angle technique for determination of optical constants," Jpn. J. Appl. Phys., Part 1 31, 120-122 (1992).
[CrossRef]

1990 (1)

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
[CrossRef]

1989 (1)

V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, "Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection," Opt. Commun. 69, 379-383 (1989).
[CrossRef]

1988 (1)

B. Rothenhäussler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
[CrossRef]

1986 (2)

I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, and I. R. Peterson, "Surface plasmon enhanced SHG from a hemicyanine monolayer," J. Phys. D 19, 2065-2075 (1986).
[CrossRef]

K. Kurosawa, R. M. Pierce, and S. Ushioda, "Raman scattering and attenuated-total-reflection studies of surface plasmon polaritons," Phys. Rev. B 33, 789-798 (1986).
[CrossRef]

1983 (1)

1982 (1)

J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982).
[CrossRef]

1981 (1)

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1968 (2)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total refelction," Z. Phys. 216, 398-410 (1968).
[CrossRef]

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Appl. Opt. (1)

Colloids Surf., A (1)

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf., A 171, 115-130 (2000).
[CrossRef]

J. Appl. Phys. (1)

F. Caruso, M. J. Jory, G. W. Bradberry, J. R. Sambles, and D. N. Furlong, "Acousto-optic surface-plasmon resonance measurements of thin films on gold," J. Appl. Phys. 82, 1023-1028 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

A. Baba and W. Knoll, "Properties of poly(3,4-ethlenedioxythiophene) ultrathin films detected by in situ electrochemical-surface plasmon field-enhanced photoluminescense spectroscopy," J. Phys. Chem. B 107, 7733-7738 (2003).
[CrossRef]

J. Phys. D (1)

I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, and I. R. Peterson, "Surface plasmon enhanced SHG from a hemicyanine monolayer," J. Phys. D 19, 2065-2075 (1986).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (4)

T. Wakamatsu and K. Aizawa, "Penetration-depth characteristics of evanescent fields at metal attenuated total reflection," Jpn. J. Appl. Phys., Part 1 44, 4272-4274 (2005).
[CrossRef]

T. Kume, S. Hayashi, and K. Yamamoto, "Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation," Jpn. J. Appl. Phys., Part 1 32, 3486-3492 (1993).
[CrossRef]

M. Akimoto and Y. Gekka, "Brewster and pseudo-Brewster angle technique for determination of optical constants," Jpn. J. Appl. Phys., Part 1 31, 120-122 (1992).
[CrossRef]

T. Wakamatsu, K. Saito, Y. Sakakibara, and H. Yokoyama, "Surface plasmon-enhanced photocurrent in organic photoelectric cells," Jpn. J. Appl. Phys., Part 1 36, 155-158 (1997).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

B. Rothenhäussler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
[CrossRef]

Opt. Commun. (1)

V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, "Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection," Opt. Commun. 69, 379-383 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

K. Kurosawa, R. M. Pierce, and S. Ushioda, "Raman scattering and attenuated-total-reflection studies of surface plasmon polaritons," Phys. Rev. B 33, 789-798 (1986).
[CrossRef]

J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Wakamatsu, T. Nakano, K. Shinbo, K. Kato, and F. Kaneko, "Detection of surface-plasmon evanescent fields using a metallic probe tip covered with fluorescence," Rev. Sci. Instrum. 70, 3962-3966 (1999).
[CrossRef]

Surf. Sci. (1)

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Z. Phys. (1)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total refelction," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Other (9)

A. Otto, "Spectroscopy of surface polaritons by attenuated total reflection," in Optical Properties of Solds, New Developments, B.O.Seraphin, ed. (North-Holland, 1976), pp. 677-727.

H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, 1980).

V.M.Agranovich and D.L.Mills, eds., Surface Polaritons (North-Holland, 1982).

A.D.Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).

S.Kawata, ed., Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
[CrossRef]

R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1983).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

H. Günzler and H.-U. Gremlich, IR Spectroscopy: an Introduction (Wiley-VCH, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fresnel’s reflection in a three-layered structure.

Fig. 2
Fig. 2

Typical measured ATR of the Ag thin film ( d = 50 nm ) at λ = 633 nm and the fitting curve of the Fresnel reflectivity. Inset, Kretschmann–Raether configuration.

Fig. 3
Fig. 3

Calculated ATR curves at ω = 2 eV ( λ = 620 nm ) as a function of wavenumber k x k 0 for the metal films with d = 50 nm : (a) Ag, (b) Au. They are presented for various imaginary-part values of the metal dielectric constant: (a) Ag, Im [ ϵ m ] = 0.5 and 0; (b) Au, Im [ ϵ m ] = 1.6 and 0. However, the values of the real part are fixed: (a) Ag, Re [ ϵ m ] = 15.6 ; (b) Au, Re [ ϵ m ] = 10.5.

Fig. 4
Fig. 4

Calculated electric-field-intensity distributions as a function of distance z λ at the ATR dip angles for the metal films of d = 50 nm : (a) Ag, (b) Au. They are calculated for various values of the Im [ ϵ m ] at the fixed Re [ ϵ m ] .

Fig. 5
Fig. 5

Absorption distributions at the ATR dip angles for metal films with d = 50 nm : (a) Ag, (b) Au, corresponding to the electric field distributions in Fig. 4.

Fig. 6
Fig. 6

(a) Polarized reflectivity curves for an air-Ag metal structure, inset, polarized reflection in the semi-infinite flat structure, and (b) polarized electric-field-intensity distributions near the air-Ag interface at the incident angle of reflectivity decrease.

Tables (1)

Tables Icon

Table 1 Comparisons between Estimated Wave numbers of SPs and ATR Modes for Noble Metals

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k SP = ω c [ ϵ s ϵ m ϵ s + ϵ m ] 1 2 ,
k x = ϵ p 1 2 k 0 sin θ k 0 ,
R p = r 12 + r 23 exp [ i 2 k z ( 2 ) d ] 1 + r 12 r 23 exp [ i 2 k z ( 2 ) d ] 2 ,
r i ( i + 1 ) = ϵ ( i + 1 ) k z ( i ) ϵ ( i ) k z ( i + 1 ) ϵ ( i + 1 ) k z ( i ) + ϵ ( i ) k z ( i + 1 ) ,
k z ( i ) = k 0 [ ϵ ( i ) ϵ ( 1 ) sin 2 θ ] 1 2 , i = 1 , 2 , 3 ,
A ( z ) = S z ¯ z ,
S z ¯ = ϵ 0 c 2 2 ω Im [ E × ( × E * ) ] z ,
Re [ E D t ] = ω Im [ ϵ ] E 2 ,

Metrics