Abstract

The efficient generation of surface plasmons from free-space optical waves is still an open problem in the field. Here we present a methodology and optimized design for a grating coupler. The photoexcitation of surface plasmons at an AgSiO2 interface is numerically demonstrated to yield a 50% coupling efficiency from a Gaussian beam into surface plasmon voltages and currents.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. J. Conway, "Efficient optical coupling to the nanoscale," Ph.D. dissertation (University of California, Los Angeles, 2006).
  3. J. Holoma "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
    [CrossRef]
  4. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  6. K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006).
    [CrossRef] [PubMed]
  7. W. A. Challener, T. W. Mcdaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recording," Jpn. J. Appl. Phys., Part 1 42, 981-988 (2003).
    [CrossRef]
  8. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
    [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  10. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, "Excitation of surface polaritons by end-fire coupling," Opt. Lett. 8, 386-388 (1983).
    [CrossRef] [PubMed]
  11. R. Charbonneau and N. Lahoud, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005).
    [CrossRef] [PubMed]
  12. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  13. D. P. Siu and T. K. Gustafson, "Coherent coupling of radiation to metal-barrier-metal structures by surface plasmons," Appl. Phys. Lett. 31, 71-73 (1977).
    [CrossRef]
  14. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, 1998), p. 187.
  15. C. Peng and W. A. Challener, "Input-grating couplers for narrow Gaussian beam: influence of groove depth," Opt. Express 12, 6481-6490 (2004).
    [CrossRef] [PubMed]
  16. G. Leveque and O. J. F. Martin, "Numerical study and optimization of a diffraction grating for surface plasmon excitation," Proc. SPIE 5927, 592713 (2005).
    [CrossRef]
  17. R. M. Lewis, V. Torczon, and M. W. Trosset, "Direct search methods: then and now," J. Comput. Appl. Math. 124, 191-207 (2000).
    [CrossRef]
  18. A. Narasimha, "Low dispersion, high spectral efficiency, RF photonic transmission systems and low loss grating couplers for silicon-on-insulator nanophotonic integrated circuits," Ph.D. dissertation (University of California, Los Angeles, 2004), pp. 70-71.
  19. J. Helszajn, Microwave Engineering: Passive, Active and Non-Reciprocal Circuits (McGraw-Hill, 1992), pp. 17-18.

2006

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

2005

G. Leveque and O. J. F. Martin, "Numerical study and optimization of a diffraction grating for surface plasmon excitation," Proc. SPIE 5927, 592713 (2005).
[CrossRef]

R. Charbonneau and N. Lahoud, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005).
[CrossRef] [PubMed]

2004

C. Peng and W. A. Challener, "Input-grating couplers for narrow Gaussian beam: influence of groove depth," Opt. Express 12, 6481-6490 (2004).
[CrossRef] [PubMed]

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

2003

W. A. Challener, T. W. Mcdaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recording," Jpn. J. Appl. Phys., Part 1 42, 981-988 (2003).
[CrossRef]

J. Holoma "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef]

2000

R. M. Lewis, V. Torczon, and M. W. Trosset, "Direct search methods: then and now," J. Comput. Appl. Math. 124, 191-207 (2000).
[CrossRef]

1997

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

1983

1977

D. P. Siu and T. K. Gustafson, "Coherent coupling of radiation to metal-barrier-metal structures by surface plasmons," Appl. Phys. Lett. 31, 71-73 (1977).
[CrossRef]

Anal. Bioanal. Chem.

J. Holoma "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef]

Appl. Phys. Lett.

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

D. P. Siu and T. K. Gustafson, "Coherent coupling of radiation to metal-barrier-metal structures by surface plasmons," Appl. Phys. Lett. 31, 71-73 (1977).
[CrossRef]

J. Comput. Appl. Math.

R. M. Lewis, V. Torczon, and M. W. Trosset, "Direct search methods: then and now," J. Comput. Appl. Math. 124, 191-207 (2000).
[CrossRef]

J. Phys. Chem. B

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys., Part 1

W. A. Challener, T. W. Mcdaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recording," Jpn. J. Appl. Phys., Part 1 42, 981-988 (2003).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Proc. SPIE

G. Leveque and O. J. F. Martin, "Numerical study and optimization of a diffraction grating for surface plasmon excitation," Proc. SPIE 5927, 592713 (2005).
[CrossRef]

Science

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

J. Conway, "Efficient optical coupling to the nanoscale," Ph.D. dissertation (University of California, Los Angeles, 2006).

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, 1998), p. 187.

A. Narasimha, "Low dispersion, high spectral efficiency, RF photonic transmission systems and low loss grating couplers for silicon-on-insulator nanophotonic integrated circuits," Ph.D. dissertation (University of California, Los Angeles, 2004), pp. 70-71.

J. Helszajn, Microwave Engineering: Passive, Active and Non-Reciprocal Circuits (McGraw-Hill, 1992), pp. 17-18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

An input beam with a Gaussian profile strikes the grating at 45° off incidence and is coupled contradirectionally into the surface plasmon mode.

Fig. 2
Fig. 2

Wave-vector diagram illustrating how a ( 1 ) grating wave vector is added to the parallel component of the wave-vector of the incident beam in order to match the wave vector of the contradirectionally propagating surface plasmon mode ( k s p ) . The advantage of coupling contradirectionally is that only the specular reflection order ( + 0 ) needs to be suppressed.

Fig. 3
Fig. 3

The optimized grating. (a) Finite-element-method simulation of the TM magnetic field. (b) Close-up of a groove showing the slight rounding of the corners needed to stabilize the FEM simulation. (c) Diagram of the widths and center-to-center separation distances of the grooves that form the grating.

Fig. 4
Fig. 4

The diameter of the input beam can be varied substantially without significantly decreasing the efficiency of the grating.

Fig. 5
Fig. 5

The efficiency of the optimized grating decreases rapidly with even small variations in the angle of the incident beam. This is expected due to the high directivity of the grating coupler acting as an antenna array.

Metrics