Abstract

A new approach to the design of Q-switched solid-state lasers is proposed that offsets heating loads by anti-Stokes fluorescence. In this ideal system, the pump will cool the gain media when the Q switch is off and removes the thermal loads that are generated by the laser pulse when the Q switch is on. The algebraic equations and analytic expressions are derived from the set of coupled rate equations and the requirements for Q-switched radiation balance. Numerical simulation of Yb-doped potassium gadolinium tungstate is provided as an example. Very high average power lasers with 1kHz repetition rate should be possible under ideal conditions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).
  2. P. Pringsheim, "Zwei bemerkungen uber den unterschied von lumineszenzund temperaturstrahlung," Z. Phys. 57, 739-746 (1929).
    [CrossRef]
  3. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
    [CrossRef]
  4. S. R. Bowman, "Lasers without internal heat generation," IEEE J. Quantum Electron. 35, 115-122 (1999).
    [CrossRef]
  5. S. R. Bowman, N. W. Jenkins, S. P. O'Connor, and B. J. Feldman, "Sensitivity and stability of a radiation-balanced laser system," IEEE J. Quantum Electron. 38, 1339-1348 (2002).
    [CrossRef]
  6. C. E. Mungan, "Thermodynamics of radiation-balanced lasing," J. Opt. Soc. Am. B 20, 1075-1082 (2003).
    [CrossRef]
  7. C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, "Modeling of radiation-balanced continuous-wave laser oscillators," J. Opt. Soc. Am. B 21, 539-542 (2004).
    [CrossRef]
  8. S. R. Bowman and C. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).
    [CrossRef]
  9. S. R. Bowman, N. W. Jenkins, B. Fedman, and S. O'Connor, "Demonstration of a radiatively cooled laser," in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 2002), p. 180.
  10. S. R. Bowman, S. P. O'Connor, and S. Biswal, "Ytterbium laser with reduced thermal loading," IEEE J. Quantum Electron. 41, 1510-1517 (2005).
    [CrossRef]
  11. M. C. Pujol, M. Rico, C. Sole, V. Nikolov, X. Solans, M. Aguilo, and F. Diaz, "Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals," Appl. Phys. B 68, 187-197 (1999).
    [CrossRef]
  12. B. Heeg, P. A. Debarber, and G. Rumbles, "Influence of fluorescence reabsorption and trapping on solid-state optical cooling," Appl. Opt. 44, 3117-3124 (2005).
    [CrossRef] [PubMed]
  13. S. Biswal, S. O'Connor, and S. R. Bowman, "Thermo-optical parameters measured in ytterbium-doped potassium-gadolinium-tungstate," Appl. Opt. 44, 3093-3097 (2005).
    [CrossRef] [PubMed]

2005

2004

2003

2002

S. R. Bowman, N. W. Jenkins, S. P. O'Connor, and B. J. Feldman, "Sensitivity and stability of a radiation-balanced laser system," IEEE J. Quantum Electron. 38, 1339-1348 (2002).
[CrossRef]

2000

S. R. Bowman and C. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).
[CrossRef]

1999

M. C. Pujol, M. Rico, C. Sole, V. Nikolov, X. Solans, M. Aguilo, and F. Diaz, "Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals," Appl. Phys. B 68, 187-197 (1999).
[CrossRef]

S. R. Bowman, "Lasers without internal heat generation," IEEE J. Quantum Electron. 35, 115-122 (1999).
[CrossRef]

1995

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

1929

P. Pringsheim, "Zwei bemerkungen uber den unterschied von lumineszenzund temperaturstrahlung," Z. Phys. 57, 739-746 (1929).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. C. Pujol, M. Rico, C. Sole, V. Nikolov, X. Solans, M. Aguilo, and F. Diaz, "Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals," Appl. Phys. B 68, 187-197 (1999).
[CrossRef]

S. R. Bowman and C. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).
[CrossRef]

IEEE J. Quantum Electron.

S. R. Bowman, "Lasers without internal heat generation," IEEE J. Quantum Electron. 35, 115-122 (1999).
[CrossRef]

S. R. Bowman, N. W. Jenkins, S. P. O'Connor, and B. J. Feldman, "Sensitivity and stability of a radiation-balanced laser system," IEEE J. Quantum Electron. 38, 1339-1348 (2002).
[CrossRef]

S. R. Bowman, S. P. O'Connor, and S. Biswal, "Ytterbium laser with reduced thermal loading," IEEE J. Quantum Electron. 41, 1510-1517 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nature

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Z. Phys.

P. Pringsheim, "Zwei bemerkungen uber den unterschied von lumineszenzund temperaturstrahlung," Z. Phys. 57, 739-746 (1929).
[CrossRef]

Other

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

S. R. Bowman, N. W. Jenkins, B. Fedman, and S. O'Connor, "Demonstration of a radiatively cooled laser," in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 2002), p. 180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the quasi-two-level energy with the pump, lasing, and spontaneous transition.

Fig. 2
Fig. 2

Prototypical scheme of the Q-switched laser with optical cooling, where T 2 is the duration of Q switch pulse, and T 1 + T 2 is the period of Q switch.

Fig. 3
Fig. 3

Polarized room-temperature absorption and emission cross sections of Yb:KGW, the principle refraction index directions are in terms of p, m, and g. (a) Absorption cross section and (b) emission cross section computed from reciprocity [10].

Fig. 4
Fig. 4

Main results of a Q-switched RBL example system. Because of no effect or little effect of thermal loads, the peak power, the average power, and the pulse energy can reach a very high level, and the repetition rate will be kilohertz order.

Tables (1)

Tables Icon

Table 1 Key Parameters of a Yb : K Gd ( W O 4 ) 2 Crystal

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

N T = N 1 + N 2 .
v F = P v F P ( v ) d v P F P ( v ) d v ,
N 2 t = c φ P ( σ A P N 1 σ E P N 2 ) N 2 τ ,
P c = N 2 τ ( h v F h v P ) ,
β σ a σ a + σ e ,
N 2 t = c φ P σ A P N T c φ P σ A P N 2 β P N 2 τ .
N 2 ( t ) = N 2 s N 2 s e k t ,
N 2 s = c φ P σ A P N T β P τ c φ P σ A P τ + β P ,
k = c φ P σ A P τ + β P τ β P ,
E c = 0 T 1 P c d t ,
= ( h v F h v P ) [ N 2 s T 1 τ N 2 s k τ ( 1 e k T 1 ) ] .
N 2 t = c φ L ( σ E L N 2 σ A L N 1 ) ,
φ L t = c φ L ( σ E L N 2 σ A L N 1 ) d l φ L τ L ,
Δ n = N 2 β L 1 β L N 1 ,
Δ n t = 1 1 β L c φ L σ E L Δ n ,
φ L t = c φ L σ E L Δ n d l φ L τ L .
φ L = ( 1 β L ) d l ( Δ n i Δ n + Δ n t ln ( Δ n Δ n i ) ) ,
E h = 0 T 2 P h d t = ( h v P h v L ) 0 T 2 c σ E L φ L Δ n d t .
E h = ( h v P h v L ) ( 1 β L ) ( Δ n i Δ n f ) ,
= ( h v P h v L ) ( N 2 i N 2 f ) ,
E c = E h .
Δ n i N 2 s β L N T 1 β L ,
E c ( h v F h v P ) ( N 2 s T 1 τ N 2 s k τ ) .
T 1 ( v P v L v F v P N 2 s β L N T N 2 s + 1 k τ ) τ ,
f r 1 T 1 .

Metrics