Abstract

The optical tuning of InP-based planar photonic crystals (PhCs) infiltrated with a photoresponsive liquid crystal system is presented. Photoinduced phase transitions of a liquid crystal blend doped with azobenzene molecules are used to tune the optical response of PhC cavities. This process is found to be reversible and stable. Several tuning conditions are analyzed in terms of the blend phase diagram.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley-VCH, 2004).
    [CrossRef]
  2. J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).
  3. A. Sharkawy, S. Shi, D. W. Prather, S. McBride, and P. Zanzucchi, "Modulating dispersion properties of low index photonic crystal structures using microfluidics," Proc. SPIE 6128, 61280W-1 (2006).
    [CrossRef]
  4. S. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, "Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration," Opt. Lett. 29, 2858-2860 (2004).
    [CrossRef]
  5. M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
    [CrossRef]
  6. J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Liquid crystal infiltration of InP-based planar photonic crystals," J. Appl. Phys. 99, 103105 (2006).
    [CrossRef]
  7. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: tuning and optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
    [CrossRef] [PubMed]
  8. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
    [CrossRef]
  9. M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, "Electrical modulation of silicon-based two-dimensional photonic bandgap structures," Appl. Phys. Lett. 88, 061103 (2006).
    [CrossRef]
  10. R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink,C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, "InP-based two dimensional photonic crystals filled with polymers," Appl. Phys. Lett. 88, 161112 (2006).
    [CrossRef]
  11. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (2006).
    [CrossRef]
  12. B. Maune, J. Witzens, T. Baehr-Jones, M. Kolodrubetz, H. Atwater, A. Scherer, R. Hagen, and Y. Qiu, "Optically triggered Q-switched photonic crystal laser," Opt. Express 13, 4699-4707 (2005).
    [CrossRef] [PubMed]
  13. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. Ingo Borel, and R. Baets, "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208 (2006).
    [CrossRef]
  14. S. H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, "Induced free carrier modulation of photonic crystal optical intersection via localized optical absorption effect," Appl. Phys. Lett. 89, 091910 (2006).
    [CrossRef]
  15. X. Hu, Y. Liu, J. Tian, B. Cheng, and D. Zhang, "Ultrafast all-optical switching in two-dimensional organic photonic crystals," Appl. Phys. Lett. 88, 121102 (2005).
    [CrossRef]
  16. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, "Tuning a two-dimensional photonic crystal resonance via optical carrier injection," Opt. Lett. 30, 64-66 (2005).
    [CrossRef] [PubMed]
  17. F. C. Ndi, J. Toulouse, T. Hodson, and D. W. Prather, "All-optical switching in silicon photonic crystals waveguides by use of the plasma dispersion effect," Opt. Lett. 30, 2254-2256 (2005).
    [CrossRef] [PubMed]
  18. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]
  19. J.-H. Sung, S. Hirano, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, "Dynamics of photochemical phase transition of guest/host liquid crystals with an azobenzene derivative as a photoresponsive chromophore," Chem. Mater. 14, 385-391 (2002).
    [CrossRef]
  20. C. H. Legge and G. R. Mitchell, "Photo-induced phase transitions in azobenzene-doped liquid crystals," J. Phys. D 25, 492-499 (1992).
    [CrossRef]
  21. T. Ikeda, "Photomodulation of liquid crystal orientations for photonic applications," J. Mater. Chem. 13, 2037-2057 (2003).
    [CrossRef]
  22. A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, "Optically switchable liquid crystal photonic structures," J. Am. Chem. Soc. 126, 13580-13581 (2004).
    [CrossRef] [PubMed]
  23. S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field," Chem. Mater. 17, 2298-2309 (2005).
    [CrossRef]
  24. S. Brugioni, R. Meucci, and S. Faetti, "Refractive indices of liquid crystals E7 and K15 in the mid- and near-IR regions," J. Opt. Technol. 73, 315-317 (2006).
    [CrossRef]
  25. K. G. Yager and C. J. Barrett, "Novel photo-switching using azobenzene functional materials," J. Photochem. Photobiol. A 182, 250-261 (2006).
    [CrossRef]
  26. M. Mulot, R. Ferrini, B. Wild, J. Moosburger, A. Forchel, R. Houdré, and S. Anand, "Fabrication of 2D InP-based photonic crystals by chlorine based chemically assisted ion beam etching," J. Vac. Sci. Technol. B 22, 707-709 (2004).
    [CrossRef]
  27. R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, "Optical study of two-dimensional InP-based photonic crystals by internal light source technique," IEEE J. Quantum Electron. 38, 786-799 (2002).
    [CrossRef]
  28. M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: the triangular lattice," Phys. Rev. B 44, 8565-8571 (1991).
    [CrossRef]

2007 (1)

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

2006 (10)

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. Ingo Borel, and R. Baets, "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208 (2006).
[CrossRef]

S. H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, "Induced free carrier modulation of photonic crystal optical intersection via localized optical absorption effect," Appl. Phys. Lett. 89, 091910 (2006).
[CrossRef]

A. Sharkawy, S. Shi, D. W. Prather, S. McBride, and P. Zanzucchi, "Modulating dispersion properties of low index photonic crystal structures using microfluidics," Proc. SPIE 6128, 61280W-1 (2006).
[CrossRef]

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Liquid crystal infiltration of InP-based planar photonic crystals," J. Appl. Phys. 99, 103105 (2006).
[CrossRef]

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: tuning and optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, "Electrical modulation of silicon-based two-dimensional photonic bandgap structures," Appl. Phys. Lett. 88, 061103 (2006).
[CrossRef]

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink,C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, "InP-based two dimensional photonic crystals filled with polymers," Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

S. Brugioni, R. Meucci, and S. Faetti, "Refractive indices of liquid crystals E7 and K15 in the mid- and near-IR regions," J. Opt. Technol. 73, 315-317 (2006).
[CrossRef]

K. G. Yager and C. J. Barrett, "Novel photo-switching using azobenzene functional materials," J. Photochem. Photobiol. A 182, 250-261 (2006).
[CrossRef]

2005 (5)

2004 (4)

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, "Optically switchable liquid crystal photonic structures," J. Am. Chem. Soc. 126, 13580-13581 (2004).
[CrossRef] [PubMed]

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

S. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, "Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration," Opt. Lett. 29, 2858-2860 (2004).
[CrossRef]

M. Mulot, R. Ferrini, B. Wild, J. Moosburger, A. Forchel, R. Houdré, and S. Anand, "Fabrication of 2D InP-based photonic crystals by chlorine based chemically assisted ion beam etching," J. Vac. Sci. Technol. B 22, 707-709 (2004).
[CrossRef]

2003 (2)

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

T. Ikeda, "Photomodulation of liquid crystal orientations for photonic applications," J. Mater. Chem. 13, 2037-2057 (2003).
[CrossRef]

2002 (2)

J.-H. Sung, S. Hirano, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, "Dynamics of photochemical phase transition of guest/host liquid crystals with an azobenzene derivative as a photoresponsive chromophore," Chem. Mater. 14, 385-391 (2002).
[CrossRef]

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, "Optical study of two-dimensional InP-based photonic crystals by internal light source technique," IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

1992 (1)

C. H. Legge and G. R. Mitchell, "Photo-induced phase transitions in azobenzene-doped liquid crystals," J. Phys. D 25, 492-499 (1992).
[CrossRef]

1991 (1)

M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: the triangular lattice," Phys. Rev. B 44, 8565-8571 (1991).
[CrossRef]

Appl. Phys. Lett. (8)

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

M. Haurylau, S. P. Anderson, K. L. Marshall, and P. M. Fauchet, "Electrical modulation of silicon-based two-dimensional photonic bandgap structures," Appl. Phys. Lett. 88, 061103 (2006).
[CrossRef]

R. van der Heijden, C.-F. Carlström, J. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. Salemink,C. Kjellander, C. Bastiaansen, D. Broer, and E. van der Drift, "InP-based two dimensional photonic crystals filled with polymers," Appl. Phys. Lett. 88, 161112 (2006).
[CrossRef]

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

S. H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, "Induced free carrier modulation of photonic crystal optical intersection via localized optical absorption effect," Appl. Phys. Lett. 89, 091910 (2006).
[CrossRef]

X. Hu, Y. Liu, J. Tian, B. Cheng, and D. Zhang, "Ultrafast all-optical switching in two-dimensional organic photonic crystals," Appl. Phys. Lett. 88, 121102 (2005).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Chem. Mater. (2)

J.-H. Sung, S. Hirano, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, "Dynamics of photochemical phase transition of guest/host liquid crystals with an azobenzene derivative as a photoresponsive chromophore," Chem. Mater. 14, 385-391 (2002).
[CrossRef]

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field," Chem. Mater. 17, 2298-2309 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, "Optical study of two-dimensional InP-based photonic crystals by internal light source technique," IEEE J. Quantum Electron. 38, 786-799 (2002).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, "Optically switchable liquid crystal photonic structures," J. Am. Chem. Soc. 126, 13580-13581 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Liquid crystal infiltration of InP-based planar photonic crystals," J. Appl. Phys. 99, 103105 (2006).
[CrossRef]

J. Mater. Chem. (1)

T. Ikeda, "Photomodulation of liquid crystal orientations for photonic applications," J. Mater. Chem. 13, 2037-2057 (2003).
[CrossRef]

J. Opt. Technol. (1)

J. Photochem. Photobiol. A (1)

K. G. Yager and C. J. Barrett, "Novel photo-switching using azobenzene functional materials," J. Photochem. Photobiol. A 182, 250-261 (2006).
[CrossRef]

J. Phys. D (1)

C. H. Legge and G. R. Mitchell, "Photo-induced phase transitions in azobenzene-doped liquid crystals," J. Phys. D 25, 492-499 (1992).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Mulot, R. Ferrini, B. Wild, J. Moosburger, A. Forchel, R. Houdré, and S. Anand, "Fabrication of 2D InP-based photonic crystals by chlorine based chemically assisted ion beam etching," J. Vac. Sci. Technol. B 22, 707-709 (2004).
[CrossRef]

New J. Phys. (1)

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. Ingo Borel, and R. Baets, "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (1)

M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: the triangular lattice," Phys. Rev. B 44, 8565-8571 (1991).
[CrossRef]

Proc. SPIE (1)

A. Sharkawy, S. Shi, D. W. Prather, S. McBride, and P. Zanzucchi, "Modulating dispersion properties of low index photonic crystal structures using microfluidics," Proc. SPIE 6128, 61280W-1 (2006).
[CrossRef]

Other (2)

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley-VCH, 2004).
[CrossRef]

J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Chemical structures of the host nematic liquid crystal LC-K15 [4-cyano- 4 -pentylbiphenyl (5CB)] and of the trans and cis molecular forms of the guest azobenzene derivative [4-butyl- 4 -methoxyazobenzene (BMAB)]. (b) Measured absorption spectra of the trans (full curve) and cis (broken curve) forms of the BMAB.

Fig. 2
Fig. 2

Phase diagram of the LC-K15/BMAB mixture as a function of the BMAB mole fraction ρ (the values are for the “bulk” azo-LC system and are taken from [20]). The shape of the molecules present in the mixture and the resulting molecular order are sketched. (a) 100% of the BMAB molecules are in the trans form, and (b) 100% of the BMAB molecules are in the cis form; the shaded region is the biphasic region predicted by the theory of Humphries and Luckhurst [20]. (c) The photostationary state after white light irradiation. T NI , T NI * , and T NI ( PS ) are the corresponding nematic–isotropic transition temperatures.

Fig. 3
Fig. 3

Complete phase diagram of the LC-K15/BMAB mixture. The photostationary region is hashed. The experimental conditions chosen for the infiltration and the optical tuning of PhCs are indicated (black squares).

Fig. 4
Fig. 4

Scanning electron microscopy. (a) Cut view of a PhC etched through a In P ( Ga , In ) ( As , P ) In P planar waveguide [the GaInAsP core layer is sketched (dashed lines)]; the hole depth is d 4 μ m . The white arrows indicate the orientation of the electric field for TE and TM polarization directions. (b) Top view of an eight-rows-thick Γ M -oriented PhC slab ( a = lattice period, D = hole diameter). (c) Top view of a Fabry–Perot cavity between two four-rows-thick Γ M -oriented PhC mirrors ( W = cavity width).

Fig. 5
Fig. 5

Irradiation procedure. The transmission through the infiltrated photonic crystals was measured after each step.

Fig. 6
Fig. 6

Measured TE transmission spectra through a Fabry–Perot cavity ( W a = 1.8 , a = 380 nm ) between two four-rows-thick Γ M -oriented PhC mirrors infiltrated with LC-K15/BMAB mixture ( ρ = 2.2 % ) , before (gray curves) and after irradiation with UV (dotted curves) and visible light (dashed curve), at (a) 24 ° C and (b) 30 ° C (corresponding to points C and B in Fig. 3, respectively). The spectrum corresponding to the thermal isotropic state at T = 37 ° C (point A in Fig. 3) is represented as reference (black curve).

Fig. 7
Fig. 7

Measured TE transmission spectra through a Fabry–Perot cavity ( W a = 1.8 , a = 380 nm ) between two four-rows-thick Γ M -oriented PhC mirrors infiltrated with LC-K15/BMAB mixture ( ρ = 3.2 % ) , before (gray curves) and after irradiation with UV (dotted curves) and visible light (dashed curve), at (a) 24 ° C and (b) 30 ° C (corresponding to points F and E in Fig. 3, respectively). The spectrum corresponding to the thermal isotropic state at T = 37 ° C (point D in Fig. 3) is represented as reference (black curve).

Metrics