Abstract

Two dye pairs suitable for energy transfer along with a photostable dye have been studied by using the closed-aperture (CA) Z-scan technique under pulsed and cw pumping. Here we use a theoretical model to elucidate the refractive and absorptive nonlinearity present simultaneously in the CA Z-scan profile. A separate open-aperture (OA) Z-scan study has been carried out to compare the nonlinear absorption parameters obtained from the CA Z-scan technique. At a fixed pumping wavelength, values of optical nonlinear parameters increase with the absorbance of dyes. It is found that the sign of refractive nonlinearity is dependent on the irradiance and the pulse width of the pump beam. In addition to the contribution of the third-order optical nonlinearity, various other mechanisms such as fifth-order nonlinearity, population relaxation to triplet states, and thermal effects are discussed here.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299-338 (1993).
    [CrossRef]
  2. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  3. T. D. Krauss and F. W. Wise, "Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS," Appl. Phys. Lett. 65, 1739-1741 (1994).
    [CrossRef]
  4. U. Tripathy, R. J. Rajesh, P. B. Bisht, and A. Subrahmanyam, "Optical nonlinearity of organic dyes as studied by Z-scan and transient grating techniques," Proc.-Indian Acad. Sci., Chem. Sci. 114, 557-564 (2002).
    [CrossRef]
  5. L. C. Oliveira and S. C. Zilio, "Single-beam time-resolved Z-scan measurements of slow absorbers," Appl. Phys. Lett. 65, 2121-2123 (1995).
    [CrossRef]
  6. P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. Mckay, and R. G. Mcduff, "Single beam Z-scan measurements," J. Nonlinear Opt. Phys. Mater. 6, 251-294 (1997).
    [CrossRef]
  7. M. Yin, H. P. Li, S. H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
    [CrossRef]
  8. X. Liu, S. Guo, H. Wang, and L. Hou, "Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption," Opt. Commun. 197, 431-437 (2001).
    [CrossRef]
  9. R. A. Ganeev, R. I. Tugushev, A. A. Ishchenko, N. A. Derevyanko, A. I. Ryasnyansky, and T. Usmanov, "Characterization of nonlinear optical parameters of polymethine dyes," Appl. Phys. B 76, 683-686 (2003).
    [CrossRef]
  10. U. Tripathy and P. B. Bisht, "Simultaneous estimation of optical nonlinear refractive and absorptive parameters by solvent induced changes in optical density," Opt. Commun. 261, 353-358 (2006).
    [CrossRef]
  11. U. Tripathy, P. B. Bisht, and K. K. Pandey, "Study of excitation energy migration and transfer in 3,30-dimethyloxacarbocyanine iodide (DMOCI) and o-(6-diethylamino-3-diethylimino-3H-xanthen-9-yl) benzoic acid (RB) in thin films of polyvinyl alcohol," Chem. Phys. 299, 105-112 (2004).
    [CrossRef]
  12. U. Tripathy and P. B. Bisht, "Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations," J. Chem. Phys. 125, 144502 (2006).
    [CrossRef] [PubMed]
  13. S. V. Rao, N. K. M. N. Srinivasa, and D. N. Rao, "Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques," Chem. Phys. Lett. 361, 439-445 (2002).
    [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980) Section 8.8.
  15. A. E. Siegman, Lasers (University Science Books, 1986).
  16. H. Toda and C. M. Verber, "Simple technique to reveal a slow nonlinear mechanism in a Z-scan like measurement," Opt. Lett. 17, 1379-1381 (1992).
    [CrossRef] [PubMed]
  17. U. Brackmann, Lamdachrome Laser Dyes (Lamda Physik GmbH, 1986).
  18. J. Zhou, E. Y. B. Pun, and X. H. Zhang, "Nonlinear optical refractive indices and absorption coefficients of α,β-unsaturated ketone derivatives," J. Opt. Soc. Am. B 18, 1456-1463 (2001).
    [CrossRef]
  19. P. Brochard, V. G. Mazza, and R. Cabanel, "Thermal nonlinear refraction in dye solutions: a study of the transient regime," J. Opt. Soc. Am. B 14, 405-414 (1997).
    [CrossRef]
  20. F. P. Schäfer, Dye Lasers (Springer-Verlag, 1990), Chap. 1.
  21. R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, 2003).
    [CrossRef]
  22. W. Sun, C. C. Byeon, M. M. McKerns, C. M. Lawson, S. Dong, D. Wang, and G. M. Gray, "Characterization of the third-order nonlinearity of [(CH3-TXP)Cd]Cl," M.Lawson, ed., Proc. SPIE 3798, 107-116 (1999).
  23. T.-H. Wei, D. J. Hagan, M. J. Sence, E. W. V. Stryland, J. W. Perry, and D. R. Coulter, "Direct measurement of nonlinear absorption and refraction in solutions of phthalocyanines," Appl. Phys. B 54, 46-51 (1992).
    [CrossRef]
  24. F. Yoshino, S. Polyakov, M. Liu, and G. Stegeman, "Observation of three-photon enhanced four-photon absorption," Phys. Rev. Lett. 91, 063902 (2003).
    [CrossRef] [PubMed]
  25. R. A. Ganeev, M. Baba, M. Morita, A. I. Ryasnyansky, M. Suzuki, M. Turu, and H. Kuroda, "Fifth-order optical nonlinearity of pseudoisocyanine solution at 529 nm," J. Opt. A, Pure Appl. Opt. 6, 282-287 (2004).
    [CrossRef]
  26. E. M. Ebeid, S. A. El-Daly, and H. Langhals, "Emission characteristics and photostability of N,N′-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenebis (dicarboximide)," J. Phys. Chem. 92, 4565-4568 (1988).
    [CrossRef]
  27. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, "Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids," IEEE J. Quantum Electron. QE-24, 443-454 (1988).
    [CrossRef]
  28. M. Falconieri and G. Salvetti, "Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2," Appl. Phys. B 69, 133-136 (1999).
    [CrossRef]
  29. M. Samoc, A. Samoc, B. Luther-Davies, M. G. Humphrey, and M.-S. Wong, "Third-order optical nonlinearities of oligomers, dendrimers and polymers derived from solution Z-scan studies," Opt. Mater. 21, 485-488 (2002).
    [CrossRef]
  30. S. J. Sheldon, L. V. Knight, and J. M. Throne, "Laser-induced thermal lens effect: a new theoretical model," Appl. Opt. 21, 1663-1669 (1982).
    [CrossRef] [PubMed]
  31. M. Falconieri, "Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers," J. Opt. A, Pure Appl. Opt. 1, 662-667 (1999).
    [CrossRef]
  32. F. L. S. A. Cuppo, A. M. F. Neto, S. L. Gomez, and P. P. Muhoray, "Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals," J. Opt. Soc. Am. B 19, 1342-1348 (2002).
    [CrossRef]
  33. A. Gnoli, L. Razzari, and M. Righini, "Z-scan measurements using high-repetition rate lasers: how to manage thermal effects," Opt. Express 13, 7976-7981 (2005).
    [CrossRef] [PubMed]

2006 (2)

U. Tripathy and P. B. Bisht, "Simultaneous estimation of optical nonlinear refractive and absorptive parameters by solvent induced changes in optical density," Opt. Commun. 261, 353-358 (2006).
[CrossRef]

U. Tripathy and P. B. Bisht, "Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations," J. Chem. Phys. 125, 144502 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

U. Tripathy, P. B. Bisht, and K. K. Pandey, "Study of excitation energy migration and transfer in 3,30-dimethyloxacarbocyanine iodide (DMOCI) and o-(6-diethylamino-3-diethylimino-3H-xanthen-9-yl) benzoic acid (RB) in thin films of polyvinyl alcohol," Chem. Phys. 299, 105-112 (2004).
[CrossRef]

R. A. Ganeev, M. Baba, M. Morita, A. I. Ryasnyansky, M. Suzuki, M. Turu, and H. Kuroda, "Fifth-order optical nonlinearity of pseudoisocyanine solution at 529 nm," J. Opt. A, Pure Appl. Opt. 6, 282-287 (2004).
[CrossRef]

2003 (2)

R. A. Ganeev, R. I. Tugushev, A. A. Ishchenko, N. A. Derevyanko, A. I. Ryasnyansky, and T. Usmanov, "Characterization of nonlinear optical parameters of polymethine dyes," Appl. Phys. B 76, 683-686 (2003).
[CrossRef]

F. Yoshino, S. Polyakov, M. Liu, and G. Stegeman, "Observation of three-photon enhanced four-photon absorption," Phys. Rev. Lett. 91, 063902 (2003).
[CrossRef] [PubMed]

2002 (4)

S. V. Rao, N. K. M. N. Srinivasa, and D. N. Rao, "Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques," Chem. Phys. Lett. 361, 439-445 (2002).
[CrossRef]

U. Tripathy, R. J. Rajesh, P. B. Bisht, and A. Subrahmanyam, "Optical nonlinearity of organic dyes as studied by Z-scan and transient grating techniques," Proc.-Indian Acad. Sci., Chem. Sci. 114, 557-564 (2002).
[CrossRef]

M. Samoc, A. Samoc, B. Luther-Davies, M. G. Humphrey, and M.-S. Wong, "Third-order optical nonlinearities of oligomers, dendrimers and polymers derived from solution Z-scan studies," Opt. Mater. 21, 485-488 (2002).
[CrossRef]

F. L. S. A. Cuppo, A. M. F. Neto, S. L. Gomez, and P. P. Muhoray, "Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals," J. Opt. Soc. Am. B 19, 1342-1348 (2002).
[CrossRef]

2001 (2)

J. Zhou, E. Y. B. Pun, and X. H. Zhang, "Nonlinear optical refractive indices and absorption coefficients of α,β-unsaturated ketone derivatives," J. Opt. Soc. Am. B 18, 1456-1463 (2001).
[CrossRef]

X. Liu, S. Guo, H. Wang, and L. Hou, "Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption," Opt. Commun. 197, 431-437 (2001).
[CrossRef]

2000 (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

1999 (2)

M. Falconieri and G. Salvetti, "Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2," Appl. Phys. B 69, 133-136 (1999).
[CrossRef]

M. Falconieri, "Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers," J. Opt. A, Pure Appl. Opt. 1, 662-667 (1999).
[CrossRef]

1997 (2)

P. Brochard, V. G. Mazza, and R. Cabanel, "Thermal nonlinear refraction in dye solutions: a study of the transient regime," J. Opt. Soc. Am. B 14, 405-414 (1997).
[CrossRef]

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. Mckay, and R. G. Mcduff, "Single beam Z-scan measurements," J. Nonlinear Opt. Phys. Mater. 6, 251-294 (1997).
[CrossRef]

1995 (1)

L. C. Oliveira and S. C. Zilio, "Single-beam time-resolved Z-scan measurements of slow absorbers," Appl. Phys. Lett. 65, 2121-2123 (1995).
[CrossRef]

1994 (1)

T. D. Krauss and F. W. Wise, "Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS," Appl. Phys. Lett. 65, 1739-1741 (1994).
[CrossRef]

1993 (1)

L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299-338 (1993).
[CrossRef]

1992 (2)

T.-H. Wei, D. J. Hagan, M. J. Sence, E. W. V. Stryland, J. W. Perry, and D. R. Coulter, "Direct measurement of nonlinear absorption and refraction in solutions of phthalocyanines," Appl. Phys. B 54, 46-51 (1992).
[CrossRef]

H. Toda and C. M. Verber, "Simple technique to reveal a slow nonlinear mechanism in a Z-scan like measurement," Opt. Lett. 17, 1379-1381 (1992).
[CrossRef] [PubMed]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1988 (2)

E. M. Ebeid, S. A. El-Daly, and H. Langhals, "Emission characteristics and photostability of N,N′-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenebis (dicarboximide)," J. Phys. Chem. 92, 4565-4568 (1988).
[CrossRef]

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, "Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids," IEEE J. Quantum Electron. QE-24, 443-454 (1988).
[CrossRef]

1982 (1)

Appl. Opt. (1)

Appl. Phys. B (4)

T.-H. Wei, D. J. Hagan, M. J. Sence, E. W. V. Stryland, J. W. Perry, and D. R. Coulter, "Direct measurement of nonlinear absorption and refraction in solutions of phthalocyanines," Appl. Phys. B 54, 46-51 (1992).
[CrossRef]

M. Falconieri and G. Salvetti, "Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2," Appl. Phys. B 69, 133-136 (1999).
[CrossRef]

M. Yin, H. P. Li, S. H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

R. A. Ganeev, R. I. Tugushev, A. A. Ishchenko, N. A. Derevyanko, A. I. Ryasnyansky, and T. Usmanov, "Characterization of nonlinear optical parameters of polymethine dyes," Appl. Phys. B 76, 683-686 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

L. C. Oliveira and S. C. Zilio, "Single-beam time-resolved Z-scan measurements of slow absorbers," Appl. Phys. Lett. 65, 2121-2123 (1995).
[CrossRef]

T. D. Krauss and F. W. Wise, "Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS," Appl. Phys. Lett. 65, 1739-1741 (1994).
[CrossRef]

Chem. Phys. (1)

U. Tripathy, P. B. Bisht, and K. K. Pandey, "Study of excitation energy migration and transfer in 3,30-dimethyloxacarbocyanine iodide (DMOCI) and o-(6-diethylamino-3-diethylimino-3H-xanthen-9-yl) benzoic acid (RB) in thin films of polyvinyl alcohol," Chem. Phys. 299, 105-112 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

S. V. Rao, N. K. M. N. Srinivasa, and D. N. Rao, "Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques," Chem. Phys. Lett. 361, 439-445 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, "Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids," IEEE J. Quantum Electron. QE-24, 443-454 (1988).
[CrossRef]

J. Chem. Phys. (1)

U. Tripathy and P. B. Bisht, "Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations," J. Chem. Phys. 125, 144502 (2006).
[CrossRef] [PubMed]

J. Nonlinear Opt. Phys. Mater. (1)

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. Mckay, and R. G. Mcduff, "Single beam Z-scan measurements," J. Nonlinear Opt. Phys. Mater. 6, 251-294 (1997).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

M. Falconieri, "Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers," J. Opt. A, Pure Appl. Opt. 1, 662-667 (1999).
[CrossRef]

R. A. Ganeev, M. Baba, M. Morita, A. I. Ryasnyansky, M. Suzuki, M. Turu, and H. Kuroda, "Fifth-order optical nonlinearity of pseudoisocyanine solution at 529 nm," J. Opt. A, Pure Appl. Opt. 6, 282-287 (2004).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (1)

E. M. Ebeid, S. A. El-Daly, and H. Langhals, "Emission characteristics and photostability of N,N′-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenebis (dicarboximide)," J. Phys. Chem. 92, 4565-4568 (1988).
[CrossRef]

Opt. Commun. (2)

X. Liu, S. Guo, H. Wang, and L. Hou, "Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption," Opt. Commun. 197, 431-437 (2001).
[CrossRef]

U. Tripathy and P. B. Bisht, "Simultaneous estimation of optical nonlinear refractive and absorptive parameters by solvent induced changes in optical density," Opt. Commun. 261, 353-358 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

M. Samoc, A. Samoc, B. Luther-Davies, M. G. Humphrey, and M.-S. Wong, "Third-order optical nonlinearities of oligomers, dendrimers and polymers derived from solution Z-scan studies," Opt. Mater. 21, 485-488 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

F. Yoshino, S. Polyakov, M. Liu, and G. Stegeman, "Observation of three-photon enhanced four-photon absorption," Phys. Rev. Lett. 91, 063902 (2003).
[CrossRef] [PubMed]

Proc.-Indian Acad. Sci., Chem. Sci. (1)

U. Tripathy, R. J. Rajesh, P. B. Bisht, and A. Subrahmanyam, "Optical nonlinearity of organic dyes as studied by Z-scan and transient grating techniques," Proc.-Indian Acad. Sci., Chem. Sci. 114, 557-564 (2002).
[CrossRef]

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299-338 (1993).
[CrossRef]

Other (6)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980) Section 8.8.

A. E. Siegman, Lasers (University Science Books, 1986).

F. P. Schäfer, Dye Lasers (Springer-Verlag, 1990), Chap. 1.

R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, 2003).
[CrossRef]

W. Sun, C. C. Byeon, M. M. McKerns, C. M. Lawson, S. Dong, D. Wang, and G. M. Gray, "Characterization of the third-order nonlinearity of [(CH3-TXP)Cd]Cl," M.Lawson, ed., Proc. SPIE 3798, 107-116 (1999).

U. Brackmann, Lamdachrome Laser Dyes (Lamda Physik GmbH, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Absorption and (b) fluorescence spectra of dyes ( 10 4 M in MEOH).

Fig. 2
Fig. 2

Five level energy diagram for laser dyes showing various processes. S 0 is the ground state. S 1 , S 2 , and T 1 , T 2 are the singlet and triplet states, respectively (see text for details).

Fig. 3
Fig. 3

Normalized CA Z-scan profile (엯) of DMOCI in MEOH ( 10 4 M ) under nanosecond pumping ( I 0 = 1.75 × 10 10 W cm 2 ) . Solid curve is the theoretical fit with Eq. (5).

Fig. 4
Fig. 4

(a) normalized OA Z-scan profiles (엯) of RB and (b) DMOCI in MEOH ( 10 4 M ) under nanosecond pumping ( I 0 = 1.75 × 10 10 W cm 2 ) and theoretical fit (curve) by using Eq. (5) with Δ Φ 0 = 0 .

Fig. 5
Fig. 5

Normalized CA Z-scan profile (엯) of C47 in MEOH ( 10 4 M ) at 355 nm ( I 0 = 1.75 × 10 10 W cm 2 ) under nanosecond pumping. The solid curve is the theoretical fit with Eq. (5).

Fig. 6
Fig. 6

Normalized CA Z-scan profile (엯) of DMOCI in MEOH ( 10 5 M ) under nanosecond pumping ( I 0 = 5.25 × 10 10 W cm 2 ) . The separation of peak-to-valley position ( Δ z p v ) is 0.4 cm ( = 1.2 z 0 ) .

Fig. 7
Fig. 7

(a) normalized CA Z-scan profile (엯) of DBPI ( 10 4 M ) in acid and in (b) DMSO under nanosecond pumping ( I 0 = 1.75 × 10 10 W cm 2 ) . The solid curves indicate the theoretical fit with Eq. (5).

Fig. 8
Fig. 8

Normalized CA Z-scan profile (엯) of DBPI in DMSO ( 10 4 M ) under picosecond pumping ( I 0 = 5.61 × 10 11 W cm 2 ) . Theoretical fit (curve) with Eq. (5) gives n 2 = ( 1.5 ± 0.2 ) × 10 13 esu and β = ( 9 ± 1 ) × 10 12 cm W .

Fig. 9
Fig. 9

Normalized CA Z-scan profile (엯) of DMOCI in MEOH ( 10 4 M ) under cw pumping (sample thickness = 0.6 mm and I 0 = 3.08 × 10 4 W cm 2 ). The solid curve is the theoretical fit with Eq. (13).

Tables (4)

Tables Icon

Table 1 Photophysical Parameters of the Dyes Used in This Work

Tables Icon

Table 2 Optical Nonlinear Parameters of Dyes ( 10 4 M ) in Methanol under Nanosecond Pumping ( I 0 = 1.75 × 10 10 W cm 2 )

Tables Icon

Table 3 Effect of Solvent on Optical Nonlinear Parameters of DBPI ( 10 4 M ) under Nanosecond Pumping ( I 0 = 1.75 × 10 10 W cm 2 )

Tables Icon

Table 4 Experimental and Calculated Values of Various Parameters under Nanosecond Pumping in Methanol

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

n ( I ) = n 0 + n 2 I ,
α ( I ) = α 0 + β I .
E ( z , r , t ) = E 0 ( t ) g ( z , r ) ,
E e ( z , r , t ) = E ( z , r , t ) exp ( α 0 L 2 ) [ 1 + 2 g ( z , r ) g * ( z , r ) Δ Ψ ] i ( Δ Φ 2 Δ Ψ ) 1 2 ,
Δ Φ = kn 2 I 0 L eff f ( t ) = Δ Φ 0 f ( t ) ,
Δ Ψ = β I 0 L eff f ( t ) 2 = Δ Ψ 0 f ( t ) ;
T ( z ) = 1 + 4 x ( x 2 + 9 ) ( x 2 + 1 ) Δ Φ 0 2 ( x 2 + 3 ) ( x 2 + 9 ) ( x 2 + 1 ) Δ Ψ 0 ,
χ R ( 3 ) ( esu ) = c n 0 2 120 π 2 n 2 [ m 2 W ] ,
χ I ( 3 ) ( esu ) = c 2 n 0 2 240 π 2 ω β [ m W ] ,
χ ( 3 ) 2 = χ R ( 3 ) 2 + χ I ( 3 ) 2 .
σ r = 2 Δ Φ 0 h ν α 0 F 0 L eff .
n ( I ) = n 0 + n 2 I + n 4 I 2 ,
n 4 = 2 Δ Φ 0 λ α 0 2 π I 0 2 [ 1 exp ( 2 α 0 L ) ] ,
T ( z ) = 1 + ϑ ( q ) q 1 ( 1 + x 2 ) q 1 tan 1 ( 2 q x [ ( 2 q + 1 ) 2 + x 2 ] τ c ( x ) 2 q t + 2 q + 1 + x 2 ) ,
T ( z ) = 1 + ϑ ( q ) q 1 ( 1 + x 2 ) q 1 tan 1 ( 2 q x 2 q + 1 + x 2 ) .
Δ Φ 0 = p α 0 L λ κ d n d T .
Δ n 0 eff = Δ n 0 qss exp ( m 2.7 ) ,
Δ n 0 qss = F 0 α 0 2 ρ C V d n d T ,
d n d T = γ ρ [ ( n 0 2 1 ) ( n 0 2 + 2 ) 6 n 0 ρ ] .

Metrics