Abstract

Volume zone plates consisting of a number of Fresnel zone plate layers are designed and fabricated inside a fused silica by the femtosecond laser direct writing method. Light diffracted from different layers of a volume zone plate constructively interfere at the focal spot to increase diffraction efficiency. The technique is experimentally verified to be effective for both low-numerical-aperture (NA) and high-NA zone plates, resulting in a significant increase in overall diffraction efficiency. The spatial resolution of a high NA volume zone plate is 500nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, "Structural modification in fused silica by a femtosecond fiber laser at 1558nm," Opt. Express 14, 6971-6980 (2006).
    [CrossRef] [PubMed]
  2. A. M. Streltsov and N. F. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  3. R. Osellame, S. Taccheo, M. Maríangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, "Femtosecond writing of active optical waveguides with astigmatically shaped beams," J. Opt. Soc. Am. B 20, 1559-1567 (2003).
    [CrossRef]
  4. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, "Fabrication of high-efficiency diffraction gratings in glass," Opt. Lett. 30, 352-354 (2005).
    [CrossRef] [PubMed]
  5. W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, "Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses," Opt. Express 10, 978-983 (2002).
    [PubMed]
  6. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, "Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining," Opt. Lett. 27, 2200-2202 (2002).
    [CrossRef]
  7. K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, "Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses," Opt. Lett. 29, 1846-1848 (2004).
    [CrossRef] [PubMed]
  8. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice Hall, 1993), pp. 374-376.
  9. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, "Volume Fresnel zone plates fabricated by femtosecond laser direct writing," Appl. Phys. Lett. 90, 011104 (2007).
    [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge U. Press, 1999), pp. 54-55.
  11. O. K. Ersoy, "Construction of point images with the scanning electron microscope: a simple algorithm," Optik (Jena) 46, 61-66 (1976).
  12. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, "Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica," J. Opt. A, Pure Appl. Opt. 7, 655-659 (2005).
    [CrossRef]
  13. T. Toma, Y. Furuya, W. Watanabe, J. Nishii, K. Hayashi, and K. Itoh, "Estimation of the refractive index change in glass induced by femtosecond laser pulses," Opt. Rev. 7, 14-17 (2000).
    [CrossRef]
  14. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).
  15. H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, 2000), pp. 157-160.

2007

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, "Volume Fresnel zone plates fabricated by femtosecond laser direct writing," Appl. Phys. Lett. 90, 011104 (2007).
[CrossRef]

2006

2005

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, "Fabrication of high-efficiency diffraction gratings in glass," Opt. Lett. 30, 352-354 (2005).
[CrossRef] [PubMed]

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, "Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica," J. Opt. A, Pure Appl. Opt. 7, 655-659 (2005).
[CrossRef]

2004

2003

2002

2000

T. Toma, Y. Furuya, W. Watanabe, J. Nishii, K. Hayashi, and K. Itoh, "Estimation of the refractive index change in glass induced by femtosecond laser pulses," Opt. Rev. 7, 14-17 (2000).
[CrossRef]

1976

O. K. Ersoy, "Construction of point images with the scanning electron microscope: a simple algorithm," Optik (Jena) 46, 61-66 (1976).

Appl. Phys. Lett.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, "Volume Fresnel zone plates fabricated by femtosecond laser direct writing," Appl. Phys. Lett. 90, 011104 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, "Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica," J. Opt. A, Pure Appl. Opt. 7, 655-659 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Opt. Rev.

T. Toma, Y. Furuya, W. Watanabe, J. Nishii, K. Hayashi, and K. Itoh, "Estimation of the refractive index change in glass induced by femtosecond laser pulses," Opt. Rev. 7, 14-17 (2000).
[CrossRef]

Optik (Jena)

O. K. Ersoy, "Construction of point images with the scanning electron microscope: a simple algorithm," Optik (Jena) 46, 61-66 (1976).

Other

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice Hall, 1993), pp. 374-376.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge U. Press, 1999), pp. 54-55.

L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).

H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, 2000), pp. 157-160.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometry used in phase computation for volume modified zone plate.

Fig. 2
Fig. 2

(a) “Full” Fresnel zone plate showing central rings in the middle of each zone. (b) Modified zone plate with central rings (thickness determined by laser writing).

Fig. 3
Fig. 3

Diffraction efficiency as a function of the number of modified phase zone plates in a volume.

Fig. 4
Fig. 4

Focal spots of low NA volume phase zone plates with central rings.

Fig. 5
Fig. 5

Diffraction efficiency of single layer zone plate ( NA = 0.66 0.91 ) .

Fig. 6
Fig. 6

Experimental spatial resolutions compared with the Rayleigh criterion of single layer high NA zone plates.

Fig. 7
Fig. 7

Focal spot of high NA zone plate ( NA = 0.91 , f = 60 μ m ).

Fig. 8
Fig. 8

Diffraction efficiencies and focal diameters of high NA volume zone plates ( NA = 0.8 ) .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r n = n λ f + ( n λ 2 ) 2 n λ f ,
ϕ 1 = ϕ a i r , 1 + ϕ g l a s s , 1 = 2 π λ ( t a i r , 1 + n g l a s s , 1 t g l a s s , 1 ) = 2 π m 1 + b 1 ,
ϕ 2 = ϕ a i r , 2 + ϕ g l a s s , 2 = 2 π λ ( t a i r , 2 + n g l a s s , 2 t g l a s s , 2 ) = 2 π m 2 + b 2 .
Δ n = λ cos θ B π t sin 1 n ,

Metrics