Abstract

A study of the temperature dependence on an absorption coefficient is presented. We describe the absorption spectrum measurement of the laser material Yb:YAG that was performed over a wide temperature range. As the temperature increases from 23°Cto300°C, the central wavelength of the Yb:YAG absorption spectrum at 940nm varies slightly from 941.2nmto941.1nm, and the maximal absorption cross section drops dramatically from 7.89×1021cm2to4.23×1021cm2. According to our experimental results, we have presented an analytic description of temperature distribution with the numerical iterative method and have investigated the pumping optimization and laser oscillator performance, taking into account that the absorption coefficient is strongly influenced by temperature. Our analyses also include the effect of pump absorption saturation and the temperature dependence of Boltzmann population fractions, stimulated emission cross section, and thermal conductivity. We have shown that the predicted laser output power exceeds the actual value if the temperature dependence of Yb:YAG’s absorption coefficient is neglected.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription