Abstract

The 32-channel dense-wavelength-division multiplexer is composed of the artificial point and line defects in the cascade two-dimensional photonic crystal waveguide with square lattice. The point defect traps the photons propagating through the line defect and emits to free space by the resonant effect. The cascade structure could overcome the mini-stop-band effect and established a continuous-wavelength multiplexing characteristic. The wavelength spacing of 0.8nm (frequency spacing of 100GHz), the interchannel cross talk of approximately 21to32dB, and high quality factor Q of 12,500 were achieved through theoretical simulation. It would be a potential component in the application of ultra-high-speed and ultra-high-capacity optical communication and optical data processing systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Dai and S. He, "Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires," Opt. Lett. 31, 1988-1990 (2006).
    [CrossRef] [PubMed]
  2. K. Takiguchi, K. Okamoto, and A. Sugita, "Arrayed-waveguide grating with uniform loss properties over the entire range of wavelength channels," Opt. Lett. 31, 459-461 (2006).
    [CrossRef] [PubMed]
  3. M. E. Marhic, "Hybrid transversal-lattice optical filters," Opt. Express 10, 1190-1194 (2002).
    [PubMed]
  4. S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, "Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves," IEEE Photon. Technol. Lett. 17, 798-800 (2005).
    [CrossRef]
  5. T. L. White, J. Zhang, B. J. Koch, and M. Haase, "Universal coupling between metal-clad waveguide and optical ring resonators," Opt. Express 15, 646-651 (2007).
    [CrossRef] [PubMed]
  6. D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Opt. Express 15, 3149-3155 (2007).
    [CrossRef] [PubMed]
  7. T. Yanagimachi, H. Oguri, J. Nayyer, S. Ishihara, and J. Minowa, "High-performance and highly stable 0.3-nm-full-width-at-half-maximum interference optical filters," Appl. Opt. 33, 3513-3517 (1994).
    [CrossRef] [PubMed]
  8. B. Li, S. Y. Zhang, J. C. Jiang, B. Fan, and F. S. Zhang, "Improving low-temperature performance of infrared thin-film interference filters utilizing the intrinsic properties of IV-VI narrow-gap semiconductors," Opt. Express 12, 401-404 (2004).
    [CrossRef] [PubMed]
  9. E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37-38 (1945).
    [CrossRef]
  10. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
    [CrossRef]
  11. S. John, "Strong localization of phonics in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  12. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  13. M. Qiu and B. Jaskorzynsk, "Design of channel drop filter in a two-dimensional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003).
    [CrossRef]
  14. A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon. Technol. Lett. 15, 694-696 (2003).
    [CrossRef]
  15. M. Bayindir, B. Temelkuran, and E. Ozbay, "Photonic crystal based beam splitter," Appl. Phys. Lett. 77, 3902-3904 (2000).
    [CrossRef]
  16. J. Smajic, C. Hafner, and D. Erni, "On the design of photonic crystal multiplexers," Opt. Express 11, 566-571 (2003).
    [CrossRef] [PubMed]
  17. S. Boscolo and M. Midrio, "Y junction in photonic crystal channel waveguides: high transmission and impedance matching," Opt. Lett. 27, 1001-1003 (2002).
    [CrossRef]
  18. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, "Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 79, 2690-2692 (2001).
    [CrossRef]
  19. B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," J. Lightwave Technol. 23, 1449-1454 (2005).
    [CrossRef]
  20. A. Giorgio, R. Diana, and A. G. Perri, "A method to design DWDM filters on photonic crystals," in Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and System (ICECS 2004) (IEEE, 2004), pp. 463-466.
    [CrossRef]
  21. C. Climinelli, F. Peluso, and M. N. Armenise, "2D guided-wave photonic band gap single and multiple cavity filters," in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 404-409.
    [CrossRef]
  22. A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809-4817 (1998).
    [CrossRef]
  23. M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, "Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals," Phys. Rev. B 64, 155113 (2001).
    [CrossRef]
  24. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  25. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  26. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
    [CrossRef]
  27. J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, "Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity," J. Appl. Phys. 92, 654-659 (2002).
    [CrossRef]
  28. H. Y. Ryu, J. K. Hwang, and Y. H. Lee, "The smallest possible whispering-gallery-like mode in the square lattice photonic crystal slab single-defect cavity," IEEE J. Quantum Electron. 39, 314-322 (2003).
    [CrossRef]
  29. C. Kim, W. J. Kim, A. Stapleton, J. R. Cao, J. D. O'Brien, and P. D. Dapkus, "Quality factors in single-defect photonic crystals lasers with asymmetric cladding layers," J. Opt. Soc. Am. B 19, 1777-1781 (2002).
    [CrossRef]

2007

2006

2005

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," J. Lightwave Technol. 23, 1449-1454 (2005).
[CrossRef]

S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, "Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves," IEEE Photon. Technol. Lett. 17, 798-800 (2005).
[CrossRef]

2004

2003

J. Smajic, C. Hafner, and D. Erni, "On the design of photonic crystal multiplexers," Opt. Express 11, 566-571 (2003).
[CrossRef] [PubMed]

M. Qiu and B. Jaskorzynsk, "Design of channel drop filter in a two-dimensional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon. Technol. Lett. 15, 694-696 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

H. Y. Ryu, J. K. Hwang, and Y. H. Lee, "The smallest possible whispering-gallery-like mode in the square lattice photonic crystal slab single-defect cavity," IEEE J. Quantum Electron. 39, 314-322 (2003).
[CrossRef]

2002

2001

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, "Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals," Phys. Rev. B 64, 155113 (2001).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, "Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

2000

M. Bayindir, B. Temelkuran, and E. Ozbay, "Photonic crystal based beam splitter," Appl. Phys. Lett. 77, 3902-3904 (2000).
[CrossRef]

1998

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809-4817 (1998).
[CrossRef]

1994

1987

S. John, "Strong localization of phonics in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

1966

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

1946

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
[CrossRef]

1945

E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37-38 (1945).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, "Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, "Photonic crystal based beam splitter," Appl. Phys. Lett. 77, 3902-3904 (2000).
[CrossRef]

M. Qiu and B. Jaskorzynsk, "Design of channel drop filter in a two-dimensional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

IEEE J. Quantum Electron.

H. Y. Ryu, J. K. Hwang, and Y. H. Lee, "The smallest possible whispering-gallery-like mode in the square lattice photonic crystal slab single-defect cavity," IEEE J. Quantum Electron. 39, 314-322 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon. Technol. Lett. 15, 694-696 (2003).
[CrossRef]

S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, "Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves," IEEE Photon. Technol. Lett. 17, 798-800 (2005).
[CrossRef]

IEEE Trans. Antennas Propag.

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

J. Appl. Phys.

J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, "Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity," J. Appl. Phys. 92, 654-659 (2002).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37-38 (1945).
[CrossRef]

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. B

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809-4817 (1998).
[CrossRef]

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, "Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals," Phys. Rev. B 64, 155113 (2001).
[CrossRef]

Phys. Rev. Lett.

S. John, "Strong localization of phonics in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Other

A. Giorgio, R. Diana, and A. G. Perri, "A method to design DWDM filters on photonic crystals," in Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and System (ICECS 2004) (IEEE, 2004), pp. 463-466.
[CrossRef]

C. Climinelli, F. Peluso, and M. N. Armenise, "2D guided-wave photonic band gap single and multiple cavity filters," in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 404-409.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Two-dimensional photonic crystal waveguide with a point defect located on the structure. (b) Dispersion relations for a line defect and a point defect with the localized frequency 0.3786 c a .

Fig. 2
Fig. 2

(a) Resonant frequency of each defect mode versus the size. (b) Nondegenerated monopole of the defect within 0.77 r .

Fig. 3
Fig. 3

(a) N × N supercell structure with a point defect centered on the supercell. (b) Defect band on the band structure.

Fig. 4
Fig. 4

Single PC structure is composed of 32 N × N supercells, 32 point defects, and a line defect, with r a = 0.135 .

Fig. 5
Fig. 5

Once the MSBs occur inside the bandgap, there are not any wavelengths for the single r a structure with 32 wavelengths. As the channel number increases, the MSB effect that limits the number of multiplexer–demultiplexer channels will occur inside the bandgap for the PC waveguide structure. The MSB could result from the coupling between the incident wave and the scattered contradirectional wave of the same inversion symmetry.

Fig. 6
Fig. 6

Cascade PC structure is composed of 32 N × N supercells, 32 point defects, and a line defect, with r 1 a = 0.135 and r 2 a = 0.1375 .

Fig. 7
Fig. 7

Spectra of various supercells N × N : (a) 11 × 11 , (b) 13 × 13 , (c) 15 × 15 .

Fig. 8
Fig. 8

Relation between defect radii and wavelengths for different supercells, N = 11 , 13, and 15.

Fig. 9
Fig. 9

Schematic of Q factor for different supercells, N = 11 , 13, and 15.

Tables (1)

Tables Icon

Table 1 Resonant Wavelength as a Function of the Radius of the Point Defect for Different N × N Supercells ( N = 11 , 13, and 15)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U ( t ) = U ( 0 ) exp ( t τ p h ) = U ( 0 ) exp [ ( ω 0 t ) Q ] ,
Q ω 0 τ p h λ Δ λ ,
Q ω 0 U ( t ) P ( t ) .

Metrics