Abstract

We present a theory for far-off resonance mode-locked Raman lasers in H2 with high finesse cavity enhancement. The theoretical derivation for the mode-locked Raman laser is based on a time-dependent continuous-wave (cw) Raman theory. Numerically calculated results, including the Stokes threshold and intracavity fields’s amplitude and phase evolution are discussed in three different regimes depending on the relations between the coherence dephasing rate γ31 and the repetition rate Ω of the mode-locked pump laser. The threshold results from the mode-locked pump cases are compared with the cw, single-mode pump field case.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription