Abstract

We report stimulated Brillouin and Rayleigh scattering experiments in n-hexane for a wide range of subcritical and supercritical temperature and pressure conditions, including the near-critical region. The measurements were performed in a cell designed for operation at conditions near or above the critical point. An injection-seeded Nd:YAG laser was employed as the pump laser and an external cavity diode laser as the probe laser. The use of 1064-nm light enhances stimulated Rayleigh scattering through direct thermal absorption. Analysis of the recorded spectra yielded the widths, shifts, and heights of the electrostrictive Brillouin, thermal Brillouin, and thermal Rayleigh peaks. Comparison of these features with theory has showed consistency with the theoretical predictions of the relationships between the heights and widths of the thermal Brillouin and thermal Rayleigh peaks. Remarkable structure and sudden changes in the behavior of the Brillouin shifts, widths, and heights were observed in the vicinity of the critical region.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Noyori, "Supercritical fluids: introduction," Chem. Rev. (Washington, D.C.) 99, 353-354 (1999).
    [CrossRef]
  2. P. Kritzer and E. Dinjus, "An assessment of supercritical water oxidation (SCWO)--existing problems, possible solutions and new reactor concepts," Chem. Eng. J. 83, 207-214 (2001).
    [CrossRef]
  3. R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, "Mesoporous silicates prepared using preorganized templates in supercritical fluids," Science 303, 507-510 (2004).
    [CrossRef] [PubMed]
  4. T. Edwards, "Cracking and deposition behavior of supercritical hydrocarbon aviation fuels," Combust. Sci. Technol. 178, 307-334 (2006).
    [CrossRef]
  5. S. Y. Tang, C. Y. She, and S. A. Lee, "Continuous-wave Rayleigh-Brillouin-gain spectroscopy in SF6," Opt. Lett. 12, 870-872 (1987).
    [CrossRef] [PubMed]
  6. G. W. Faris, L. E. Jusinski, and A. P. Hickman, "High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals," J. Opt. Soc. Am. B 10, 587-599 (1993).
    [CrossRef]
  7. K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, "CW stimulated Brillouin gain spectroscopy of liquids," Chem. Phys. Lett. 182, 371-378 (1991).
    [CrossRef]
  8. G. W. Faris, L. E. Jusinski, M. J. Dyer, W. K. Bischel, and A. P. Hickman, "High-resolution Brillouin gain spectroscopy in fused silica," Opt. Lett. 15, 703-705 (1990).
    [CrossRef] [PubMed]
  9. G. W. Faris, M. Gerken, C. Jirauschek, D. Hogan, and Y. Chen, "High-spectral-resolution stimulated Rayleigh-Brillouin scattering at 1 μm," Opt. Lett. 26, 1894-1896 (2001).
    [CrossRef]
  10. C. Jirauschek, E. M. Jeffrey, and G. W. Faris, "Electrostrictive and thermal stimulated Rayleigh spectroscopy in liquids," Phys. Rev. Lett. 87, 233902 (2001).
    [CrossRef] [PubMed]
  11. R. W. Gammon, H. L. Swinney, and H. Z. Cummins, "Brillouin scattering in carbon dioxide in the critical region," Phys. Rev. Lett. 19, 1467-1469 (1967).
    [CrossRef]
  12. M. S. Brown and R. R. Steeper, "CO2-based thermometry of supercritical water oxidation," Appl. Spectrosc. 45, 1733-1738 (1991).
    [CrossRef]
  13. W. Kohl, H. A. Lindner, and E. U. Franck, "Raman spectra of water to 400°C and 3000 bar," Ber. Bunsenges. Phys. Chem. 95, 1586-1593 (1991).
  14. M. Oschwald and A. Schik, "Supercritical nitrogen free jet investigated by spontaneous Raman scattering," Exp. Fluids 27, 497-506 (1999).
    [CrossRef]
  15. H. Nakayama, K. Saitow, M. Sakashita, K. Ishii, and K. Nishikawa, "Raman spectral changes of neat CO2 across the ridge of density fluctuation in supercritical region," Chem. Phys. Lett. 320, 323-327 (2000).
    [CrossRef]
  16. A. Idrissi, S. Longelin, P. Damay, and F. Leclercq, "Low-frequency Raman spectra of sub- and supercritical CO2: Qualitative analysis of the diffusion coefficient behavior," J. Chem. Phys. 123, 094501 (2005).
    [CrossRef]
  17. E. H. Abramson and J. M. Brown, "Equation of state of water based on speeds of sound measured in the diamond-anvil cell," Geochim. Cosmochim. Acta 68, 1827-1835 (2004).
    [CrossRef]
  18. W. Kaiser and M. Maier, "Stimulated Rayleigh, Brillouin, and Raman spectroscopy," in Laser Handbook, F.T.Arecchi and E.O.Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077-1150.
  19. J. Humlicek, "Optimized computation of the Voigt and complex probability functions," J. Quant. Spectrosc. Radiat. Transf. 27, 437-444 (1982).
    [CrossRef]
  20. F. Schreier, "The Voigt and complex error function: a comparison of computational methods," J. Quant. Spectrosc. Radiat. Transf. 48, 743-762 (1992).
    [CrossRef]
  21. M. B. Ewing and J. C. S. Ochoa, "Vapour pressures of n-hexane determined by comparative ebulliometry," J. Chem. Thermodyn. 38, 283-288 (2006).
    [CrossRef]
  22. K. Nishikawa and T. Morita, "Inhomogeneity of molecular distribution in supercritical fluids," Chem. Phys. Lett. 316, 238-242 (2000).
    [CrossRef]

2006 (2)

T. Edwards, "Cracking and deposition behavior of supercritical hydrocarbon aviation fuels," Combust. Sci. Technol. 178, 307-334 (2006).
[CrossRef]

M. B. Ewing and J. C. S. Ochoa, "Vapour pressures of n-hexane determined by comparative ebulliometry," J. Chem. Thermodyn. 38, 283-288 (2006).
[CrossRef]

2005 (1)

A. Idrissi, S. Longelin, P. Damay, and F. Leclercq, "Low-frequency Raman spectra of sub- and supercritical CO2: Qualitative analysis of the diffusion coefficient behavior," J. Chem. Phys. 123, 094501 (2005).
[CrossRef]

2004 (2)

E. H. Abramson and J. M. Brown, "Equation of state of water based on speeds of sound measured in the diamond-anvil cell," Geochim. Cosmochim. Acta 68, 1827-1835 (2004).
[CrossRef]

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, "Mesoporous silicates prepared using preorganized templates in supercritical fluids," Science 303, 507-510 (2004).
[CrossRef] [PubMed]

2001 (3)

C. Jirauschek, E. M. Jeffrey, and G. W. Faris, "Electrostrictive and thermal stimulated Rayleigh spectroscopy in liquids," Phys. Rev. Lett. 87, 233902 (2001).
[CrossRef] [PubMed]

P. Kritzer and E. Dinjus, "An assessment of supercritical water oxidation (SCWO)--existing problems, possible solutions and new reactor concepts," Chem. Eng. J. 83, 207-214 (2001).
[CrossRef]

G. W. Faris, M. Gerken, C. Jirauschek, D. Hogan, and Y. Chen, "High-spectral-resolution stimulated Rayleigh-Brillouin scattering at 1 μm," Opt. Lett. 26, 1894-1896 (2001).
[CrossRef]

2000 (2)

H. Nakayama, K. Saitow, M. Sakashita, K. Ishii, and K. Nishikawa, "Raman spectral changes of neat CO2 across the ridge of density fluctuation in supercritical region," Chem. Phys. Lett. 320, 323-327 (2000).
[CrossRef]

K. Nishikawa and T. Morita, "Inhomogeneity of molecular distribution in supercritical fluids," Chem. Phys. Lett. 316, 238-242 (2000).
[CrossRef]

1999 (2)

M. Oschwald and A. Schik, "Supercritical nitrogen free jet investigated by spontaneous Raman scattering," Exp. Fluids 27, 497-506 (1999).
[CrossRef]

R. Noyori, "Supercritical fluids: introduction," Chem. Rev. (Washington, D.C.) 99, 353-354 (1999).
[CrossRef]

1993 (1)

1992 (1)

F. Schreier, "The Voigt and complex error function: a comparison of computational methods," J. Quant. Spectrosc. Radiat. Transf. 48, 743-762 (1992).
[CrossRef]

1991 (3)

M. S. Brown and R. R. Steeper, "CO2-based thermometry of supercritical water oxidation," Appl. Spectrosc. 45, 1733-1738 (1991).
[CrossRef]

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, "CW stimulated Brillouin gain spectroscopy of liquids," Chem. Phys. Lett. 182, 371-378 (1991).
[CrossRef]

W. Kohl, H. A. Lindner, and E. U. Franck, "Raman spectra of water to 400°C and 3000 bar," Ber. Bunsenges. Phys. Chem. 95, 1586-1593 (1991).

1990 (1)

1987 (1)

1982 (1)

J. Humlicek, "Optimized computation of the Voigt and complex probability functions," J. Quant. Spectrosc. Radiat. Transf. 27, 437-444 (1982).
[CrossRef]

1967 (1)

R. W. Gammon, H. L. Swinney, and H. Z. Cummins, "Brillouin scattering in carbon dioxide in the critical region," Phys. Rev. Lett. 19, 1467-1469 (1967).
[CrossRef]

Appl. Spectrosc. (1)

Ber. Bunsenges. Phys. Chem. (1)

W. Kohl, H. A. Lindner, and E. U. Franck, "Raman spectra of water to 400°C and 3000 bar," Ber. Bunsenges. Phys. Chem. 95, 1586-1593 (1991).

Chem. Eng. J. (1)

P. Kritzer and E. Dinjus, "An assessment of supercritical water oxidation (SCWO)--existing problems, possible solutions and new reactor concepts," Chem. Eng. J. 83, 207-214 (2001).
[CrossRef]

Chem. Phys. Lett. (3)

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, "CW stimulated Brillouin gain spectroscopy of liquids," Chem. Phys. Lett. 182, 371-378 (1991).
[CrossRef]

H. Nakayama, K. Saitow, M. Sakashita, K. Ishii, and K. Nishikawa, "Raman spectral changes of neat CO2 across the ridge of density fluctuation in supercritical region," Chem. Phys. Lett. 320, 323-327 (2000).
[CrossRef]

K. Nishikawa and T. Morita, "Inhomogeneity of molecular distribution in supercritical fluids," Chem. Phys. Lett. 316, 238-242 (2000).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

R. Noyori, "Supercritical fluids: introduction," Chem. Rev. (Washington, D.C.) 99, 353-354 (1999).
[CrossRef]

Combust. Sci. Technol. (1)

T. Edwards, "Cracking and deposition behavior of supercritical hydrocarbon aviation fuels," Combust. Sci. Technol. 178, 307-334 (2006).
[CrossRef]

Exp. Fluids (1)

M. Oschwald and A. Schik, "Supercritical nitrogen free jet investigated by spontaneous Raman scattering," Exp. Fluids 27, 497-506 (1999).
[CrossRef]

Geochim. Cosmochim. Acta (1)

E. H. Abramson and J. M. Brown, "Equation of state of water based on speeds of sound measured in the diamond-anvil cell," Geochim. Cosmochim. Acta 68, 1827-1835 (2004).
[CrossRef]

J. Chem. Phys. (1)

A. Idrissi, S. Longelin, P. Damay, and F. Leclercq, "Low-frequency Raman spectra of sub- and supercritical CO2: Qualitative analysis of the diffusion coefficient behavior," J. Chem. Phys. 123, 094501 (2005).
[CrossRef]

J. Chem. Thermodyn. (1)

M. B. Ewing and J. C. S. Ochoa, "Vapour pressures of n-hexane determined by comparative ebulliometry," J. Chem. Thermodyn. 38, 283-288 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (2)

J. Humlicek, "Optimized computation of the Voigt and complex probability functions," J. Quant. Spectrosc. Radiat. Transf. 27, 437-444 (1982).
[CrossRef]

F. Schreier, "The Voigt and complex error function: a comparison of computational methods," J. Quant. Spectrosc. Radiat. Transf. 48, 743-762 (1992).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

C. Jirauschek, E. M. Jeffrey, and G. W. Faris, "Electrostrictive and thermal stimulated Rayleigh spectroscopy in liquids," Phys. Rev. Lett. 87, 233902 (2001).
[CrossRef] [PubMed]

R. W. Gammon, H. L. Swinney, and H. Z. Cummins, "Brillouin scattering in carbon dioxide in the critical region," Phys. Rev. Lett. 19, 1467-1469 (1967).
[CrossRef]

Science (1)

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, "Mesoporous silicates prepared using preorganized templates in supercritical fluids," Science 303, 507-510 (2004).
[CrossRef] [PubMed]

Other (1)

W. Kaiser and M. Maier, "Stimulated Rayleigh, Brillouin, and Raman spectroscopy," in Laser Handbook, F.T.Arecchi and E.O.Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077-1150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of experimental apparatus for stimulated Rayleigh and stimulated Brillouin scattering.

Fig. 2
Fig. 2

Schematic of supercritical cell design.

Fig. 3
Fig. 3

Schematic of high-pressure manifold.

Fig. 4
Fig. 4

Stimulated Rayleigh–Brillouin scattering spectrum for n-hexane measured at 1064 nm near the critical temperature ( 247 ° C ) for three different pressures. The spectral fits to the data including the electrostrictive and thermal components to the fit are shown as thick curves.

Fig. 5
Fig. 5

Brillouin shift (solid circles) observed in stimulated Brillouin scattering for n-hexane at 1064 nm as a function of temperature and pressure. The location of the critical point is shown by the open circle.

Fig. 6
Fig. 6

Brillouin peak width (solid circles) observed in stimulated Brillouin scattering for n-hexane at 1064 nm as a function of temperature and pressure. The location of the critical point is shown by the open circle.

Fig. 7
Fig. 7

Brillouin (a) shift and (b) width observed in stimulated Brillouin scattering for n-hexane at 1064 nm as a function of pressure for a temperature of 233.6 ° C . Both the Brillouin shift and width have a local minimum near the critical point.

Fig. 8
Fig. 8

Brillouin (a) shift and (b) width observed in stimulated Brillouin scattering for n-hexane at 1064 nm for a pressure of 45   bar as a function of temperature. Local maxima are observed near the critical temperature above the critical pressure.

Fig. 9
Fig. 9

Brillouin (a) shift and (b) width for n-hexane at 240 ° C as a function of pressure.

Fig. 10
Fig. 10

Intensity of the (a) electrostrictive and (b) absorptive components of stimulated Brillouin scattering for n-hexane at 1064 nm for a temperature of 232 ° C as a function of pressure. A sharp increase in intensity is observed near the critical point.

Metrics