Abstract

We report experiments and modeling of surface plasmon resonance (SPR)-assisted coupling to whispering-gallery modes in dielectric microresonators. Our experiments use a gold-coated glass-prism that is evanescently coupled to a 125-μm-diameter silica-micropillar resonator. We find nearly 12-fold enhancement in the whispering-gallery resonance extinction ratio in the vicinity of the SPR angle using a 50-nm gold-film. The measured trends of the enhancement, as a function of the laser-beam incident angle and the gold-film thickness, show good qualitative agreement with our modeling of SPR-assisted coupling to ring resonator modes. Our modeling suggests that the far-field interference between the SPR-enhanced microresonator mode field and the attenuated total internal reflected field from the prism gives the observed extinction ratio enhancement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, "Multistage high-order microring-resonator add-drop filters," Opt. Lett. 31, 2571-2573 (2006).
    [CrossRef] [PubMed]
  2. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-QSiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
    [CrossRef]
  3. D. K. Armani, T. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
    [CrossRef] [PubMed]
  4. H. T. Lee and A. W. Poon, "Fano resonances in prism-coupled square micropillars," Opt. Lett. 29, 5-7 (2004).
    [CrossRef] [PubMed]
  5. I. M. White, H. Oveys, and X. Fan, "Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical reflecting waveguides," Appl. Phys. Lett. 89, 191106 (2006).
    [CrossRef]
  6. M. Hossein-Zadeh and K. J. Vahala, "Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium," Opt. Express 14, 10800-10810 (2006).
    [CrossRef] [PubMed]
  7. N. K. Hon and A. W. Poon, "Surface plasmon resonance enhanced coupling to whispering-gallery modes in optical micropillar resonators," in Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (Optical Society of America, 2006).
    [CrossRef] [PubMed]
  8. I. M. White, J. D. Suter, H. Oveys, X. Fan, T. L. Smith, J. Zhang, B. J. Koch, and M. A. Haase, "Universal coupling between metal-clad waveguides and optical ring resonators," Opt. Express 15, 646-651 (2007).
    [CrossRef] [PubMed]
  9. D. Amarie, T.-D. Onuta, R. A. Potyrailo, and B. Dragnea, "Submicrometer cavity surface plasmon sensors," J. Phys. Chem. B 109, 15515-15519 (2005).
    [CrossRef]
  10. I. I. Smolyaninov and C. C. Davis, "Linear and nonlinear optics of surface-plasmon whispering-gallery modes," Phys. Rev. B 69, 205417 (2004).
    [CrossRef]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  12. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
    [CrossRef]
  13. K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8867-8874 (2005).
    [CrossRef]
  14. P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 4.
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983).
    [CrossRef] [PubMed]
  16. T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, "Measuring particle-substrate distance with surface plasmon resonance microscopy," J. Opt. A, Pure Appl. Opt. 3, 333-337 (2001).
    [CrossRef]

2007 (1)

2006 (4)

M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, "Multistage high-order microring-resonator add-drop filters," Opt. Lett. 31, 2571-2573 (2006).
[CrossRef] [PubMed]

M. Hossein-Zadeh and K. J. Vahala, "Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium," Opt. Express 14, 10800-10810 (2006).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, "Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical reflecting waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-QSiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

2005 (2)

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8867-8874 (2005).
[CrossRef]

D. Amarie, T.-D. Onuta, R. A. Potyrailo, and B. Dragnea, "Submicrometer cavity surface plasmon sensors," J. Phys. Chem. B 109, 15515-15519 (2005).
[CrossRef]

2004 (2)

I. I. Smolyaninov and C. C. Davis, "Linear and nonlinear optics of surface-plasmon whispering-gallery modes," Phys. Rev. B 69, 205417 (2004).
[CrossRef]

H. T. Lee and A. W. Poon, "Fano resonances in prism-coupled square micropillars," Opt. Lett. 29, 5-7 (2004).
[CrossRef] [PubMed]

2003 (1)

D. K. Armani, T. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

2001 (1)

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, "Measuring particle-substrate distance with surface plasmon resonance microscopy," J. Opt. A, Pure Appl. Opt. 3, 333-337 (2001).
[CrossRef]

1983 (1)

1968 (1)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Alexander, R. W.

Amarie, D.

D. Amarie, T.-D. Onuta, R. A. Potyrailo, and B. Dragnea, "Submicrometer cavity surface plasmon sensors," J. Phys. Chem. B 109, 15515-15519 (2005).
[CrossRef]

Armani, D. K.

D. K. Armani, T. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Barclay, P. E.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-QSiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Barwicz, T.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Choi, K.

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8867-8874 (2005).
[CrossRef]

Curtis, A. S. G.

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, "Measuring particle-substrate distance with surface plasmon resonance microscopy," J. Opt. A, Pure Appl. Opt. 3, 333-337 (2001).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov and C. C. Davis, "Linear and nonlinear optics of surface-plasmon whispering-gallery modes," Phys. Rev. B 69, 205417 (2004).
[CrossRef]

Dragnea, B.

D. Amarie, T.-D. Onuta, R. A. Potyrailo, and B. Dragnea, "Submicrometer cavity surface plasmon sensors," J. Phys. Chem. B 109, 15515-15519 (2005).
[CrossRef]

Fan, X.

I. M. White, J. D. Suter, H. Oveys, X. Fan, T. L. Smith, J. Zhang, B. J. Koch, and M. A. Haase, "Universal coupling between metal-clad waveguides and optical ring resonators," Opt. Express 15, 646-651 (2007).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, "Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical reflecting waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Haase, M. A.

Hon, N. K.

N. K. Hon and A. W. Poon, "Surface plasmon resonance enhanced coupling to whispering-gallery modes in optical micropillar resonators," in Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (Optical Society of America, 2006).
[CrossRef] [PubMed]

Hossein-Zadeh, M.

Ippen, E. P.

Kärtner, F. X.

Kim, H.

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8867-8874 (2005).
[CrossRef]

Kim, S.

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8867-8874 (2005).
[CrossRef]

Kippenberg, T.

D. K. Armani, T. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Koch, B. J.

Lee, B.

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8867-8874 (2005).
[CrossRef]

Lee, H. T.

Lev, B.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-QSiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Lim, Y.

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8867-8874 (2005).
[CrossRef]

Long, L. L.

Mabuchi, H.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-QSiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Morgan, H.

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, "Measuring particle-substrate distance with surface plasmon resonance microscopy," J. Opt. A, Pure Appl. Opt. 3, 333-337 (2001).
[CrossRef]

Onuta, T.-D.

D. Amarie, T.-D. Onuta, R. A. Potyrailo, and B. Dragnea, "Submicrometer cavity surface plasmon sensors," J. Phys. Chem. B 109, 15515-15519 (2005).
[CrossRef]

Ordal, M. A.

Otto, A.

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Oveys, H.

I. M. White, J. D. Suter, H. Oveys, X. Fan, T. L. Smith, J. Zhang, B. J. Koch, and M. A. Haase, "Universal coupling between metal-clad waveguides and optical ring resonators," Opt. Express 15, 646-651 (2007).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, "Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical reflecting waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Painter, O.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-QSiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Poon, A. W.

H. T. Lee and A. W. Poon, "Fano resonances in prism-coupled square micropillars," Opt. Lett. 29, 5-7 (2004).
[CrossRef] [PubMed]

N. K. Hon and A. W. Poon, "Surface plasmon resonance enhanced coupling to whispering-gallery modes in optical micropillar resonators," in Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (Optical Society of America, 2006).
[CrossRef] [PubMed]

Popovíc, M. A.

Potyrailo, R. A.

D. Amarie, T.-D. Onuta, R. A. Potyrailo, and B. Dragnea, "Submicrometer cavity surface plasmon sensors," J. Phys. Chem. B 109, 15515-15519 (2005).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Rakich, P. T.

Riehle, M.

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, "Measuring particle-substrate distance with surface plasmon resonance microscopy," J. Opt. A, Pure Appl. Opt. 3, 333-337 (2001).
[CrossRef]

Smith, H. I.

Smith, T. L.

Smolyaninov, I. I.

I. I. Smolyaninov and C. C. Davis, "Linear and nonlinear optics of surface-plasmon whispering-gallery modes," Phys. Rev. B 69, 205417 (2004).
[CrossRef]

Socci, L.

Spillane, S. M.

D. K. Armani, T. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-QSiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Suter, J. D.

Vahala, K. J.

Ward, C. A.

Watts, M. R.

White, I. M.

I. M. White, J. D. Suter, H. Oveys, X. Fan, T. L. Smith, J. Zhang, B. J. Koch, and M. A. Haase, "Universal coupling between metal-clad waveguides and optical ring resonators," Opt. Express 15, 646-651 (2007).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, "Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical reflecting waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 4.

Zhang, J.

Zhang, T.

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, "Measuring particle-substrate distance with surface plasmon resonance microscopy," J. Opt. A, Pure Appl. Opt. 3, 333-337 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

I. M. White, H. Oveys, and X. Fan, "Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical reflecting waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-QSiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, "Measuring particle-substrate distance with surface plasmon resonance microscopy," J. Opt. A, Pure Appl. Opt. 3, 333-337 (2001).
[CrossRef]

J. Phys. Chem. B (1)

D. Amarie, T.-D. Onuta, R. A. Potyrailo, and B. Dragnea, "Submicrometer cavity surface plasmon sensors," J. Phys. Chem. B 109, 15515-15519 (2005).
[CrossRef]

Nature (1)

D. K. Armani, T. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

I. I. Smolyaninov and C. C. Davis, "Linear and nonlinear optics of surface-plasmon whispering-gallery modes," Phys. Rev. B 69, 205417 (2004).
[CrossRef]

Z. Phys. (1)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 4.

N. K. Hon and A. W. Poon, "Surface plasmon resonance enhanced coupling to whispering-gallery modes in optical micropillar resonators," in Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (Optical Society of America, 2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the SPR-assisted coupling to WG modes in a prism-coupled dielectric microresonator. d, gold-film thickness; p-pol., p-polarization; LD, laser diode; PD, photodiode. Inset (i): Zoom-in view schematic of the coupling region. Ray 1, out-coupled SPR-enhanced microresonator resonance field; ray 2, ATIR field; red dashed-line, SPR-enhanced evanescent field; blue dashed-line, evanescent field without gold-film. Inset (ii): Schematic of the right-angle prism side-coupled to a circular micropillar resonator. Only the lower-half of the prism surface is coated with a gold-film. (b) Measured p-polarized reflection spectra at θ 44.1 ° with (red) and without (blue) a 27 + 3 - nm gold-film.

Fig. 2
Fig. 2

(a) Measured resonance ER of modes A and B as a function of θ. (b) Measured normalized resonance ER (mode A/mode B) and SPR reflectance (without micropillar resonator) as a function of θ using a 27 - nm gold-film at a wavelength of 686 nm .

Fig. 3
Fig. 3

(a)–(c) Measured p-polarized reflection spectra at (a) θ 43.7 ° with 38 - nm gold-film, (b) θ 43.5 ° with 50 - nm gold-film, and (c) θ 43.2 ° with 55 - nm gold-film. (d)–(f) Measured normalized resonance ER as a function of θ with (d) 38 - nm gold-film, (e) 50 - nm gold-film, and (f) 55 - nm gold-film. (g) Measured maximum normalized resonance ER as a function of d.

Fig. 4
Fig. 4

(a) Schematic of the model. (b), (c) Modeled electric field amplitude distribution with (red) and without (blue) a 30 - nm -gold as a p-polarized light is incident on (b) the prism, and (c) the microresonator layer using g = 0.9 μ m . p-pol., p-polarized. (d) Modeled reflectance R 1 (green), R 2 (red), and transmittance T 1 (blue), T 2 (cyan) as a function of θ with a 30 - nm gold-layer. T 1 and T 2 overlap due to the reciprocity in the transmission of multilayer films.

Fig. 5
Fig. 5

(a) Modeled cavity mode field intensity using α = 5 cm 1 with a 30 - nm gold-coating (red) and an uncoated prism (blue). (b) Modeled cavity mode field intensity ratio (with SPR-assisted/without SPR-assisted) and SPR reflectance as a function of θ.

Fig. 6
Fig. 6

(a) Modeled resonance ER as a function of θ with (red) and without (blue) 30 - nm gold-layer. (b) Normalized resonance ER and SPR reflectance as a function of θ.

Fig. 7
Fig. 7

(a)–(c) Modeled normalized resonance ER as a function of θ with gold-film thicknesses d = ( a ) 20, (b) 40, and (c) 50 nm . (b) Maximum normalized resonance ER as a function of d.

Fig. 8
Fig. 8

(a) Modeled maximum resonance ER as a function of air-gap separation with (red) and without (blue) 45 - nm gold-layer using α = 5 cm 1 . Inset: θ at which the modeled maximum resonance ERs are obtained as a function of g with (red) and without (blue) a 45 - nm gold-layer. (b) Modeled air-gap spacing with maximum resonance ER at 90% as a function of d.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r 0123 = r 01 + r 123 e 2 i k z 1 d 1 1 + r 01 r 123 e 2 i k z 1 d 1 , r 123 = r 12 + r 23 e 2 i k z 2 d 2 1 + r 12 r 23 e 2 i k z 2 d 2 ,
t 0123 = t 01 t 12 t 23 e i k z 1 d 1 e i k z 2 d 2 ( 1 + r 12 r 23 e 2 i k z 2 d 2 ) ( 1 + r 01 r 123 e 2 i k z 1 d 1 ) ,
E r = r 1 + t 2 ( t 1 e i φ e α L 1 r 2 e i φ e α L ) ,
t 1 e i φ e α L 1 r 2 e i φ e α L 2

Metrics