Abstract

We recently described a general solution to the phase-matching problem that arises when one wishes to perform an arbitrary number of nonlinear optical processes in a single medium [Phys. Rev. Lett. 95, 133901 (2005) ]. Here we outline in detail the implementation of the solution for a one-dimensional photonic quasicrystal, which acts as a simultaneous frequency doubler for three independent optical beams. We confirm this solution experimentally using an electric-field poled KTiOPO4 crystal. In optimizing the device, we find—contrary to common practice—that simple duty cycles of 100% and 0% may yield the highest efficiencies, and we show that our device is more efficient than a comparable device based on periodic quasi-phase matching.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription