Abstract

Using a novel self-cascaded first-order second-harmonic generation (SHG) and third-order sum-frequency generation (SFG) in a ZnO periodically poled lithium niobate crystal fiber, tunable blue–green light was demonstrated. At a domain pitch of 15.45μm, the SHG signal and its fundamental signal at 1423.9nm can satisfy the third-order SFG quasi-phase-matched (QPM) condition. The measured SHG power at 714.2nm was 12.25mW under 100mW input power, and the estimated nonlinear coefficient (d33) achieved was 25.3pmV. The self-cascaded SHG+SFG power measured at 477.1nm was 700μW under 350mW input power. The maximum internal efficiency of the SHG is 14.84%. The tuning range of the self-cascaded SHG and SFG generated tunable blue–green light was more than 40nm, from 471.3 to 515nm. The maximum simulated 3dB bandwidth achieved using a gradient-period QPM structure is 196nm, which is from 1476 to 1672nm. The gain-bandwidth product of the self-cascaded SHG and SFG processes decreases drastically as the bandwidth is broadened.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Johnson and A. A. Ballman, "Coherent emission from rare earth ions in electro-optic crystals," J. Appl. Phys. 40, 297-302 (1969).
    [CrossRef]
  2. T. Y. Fan, G. J. Dixon, and R. L. Byer, "Efficient GaAlAs diode-laser-pumped operation of Nd:YLF at 1.047μm with intracavity doubling to 523.6nm," Opt. Lett. 11, 204-206 (1986).
    [CrossRef] [PubMed]
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  4. J. Zimmermann, J. Struckmeier, M. R. Hofmann, and J. P. Meyn, "Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal," Opt. Lett. 27, 604-606 (2002).
    [CrossRef]
  5. S. E. Harris, "Tunable optical parametric oscillators," Proc. IEEE 58, 2096-2113 (1969).
    [CrossRef]
  6. R. A. Baumgartner and R. L. Byer, "Optical parametric amplification," IEEE J. Quantum Electron. QE-15, 432-444 (1979).
    [CrossRef]
  7. L. Myers, R. Eckardt, M. M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (2002).
    [CrossRef]
  8. K. Kato, "Second-harmonic and sum-frequency generation to 4950 and 4589Å in KTP," IEEE J. Quantum Electron. QE-24, 3-4 (1988).
    [CrossRef]
  9. P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, "Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure," Opt. Lett. 29, 95-97 (2004).
    [CrossRef] [PubMed]
  10. C. K. Lee, J. Y. Zhang, J. Y. J. Huang, and C. L. Pan, "Theoretical and experimental studies of tunable ultraviolet-blue femtosecond pulses in a 405-nm pumped type I β-BaB2O4 noncollinear optical parametric amplifier and cascading sum-frequency generation," J. Opt. Soc. Am. B 21, 1494-1499 (2004).
    [CrossRef]
  11. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
    [CrossRef]
  12. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, "Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3," Opt. Lett. 20, 52-54 (1995).
    [CrossRef] [PubMed]
  13. X.-M. Liu, H.-Y. Zhang, Y.-L. Guo, and Y.-H. Li, "Optimal design and applications for quasi-phase-matching three-wave mixing," IEEE J. Quantum Electron. 38, 1225-1233 (2002).
    [CrossRef]
  14. M. Taya, M. C. Bashaw, and M. M. Fejer, "Photorefractive effects in periodically poled ferroelectrics," Opt. Lett. 21, 857-859 (1996).
    [CrossRef] [PubMed]
  15. D. H. Jundt, "Lithium niobate single crystal fiber growth and quasi-phase matching," Ph.D. dissertation (Stanford University, 1991).
  16. L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
    [CrossRef]
  17. L. Becouarn, E. Lallier, M. Brevignon, and J. Lehoux, "Cascaded second-harmonic and sum-frequency generation of a CO2 laser by use of a single quasi-phase-matched GaAs crystal," Opt. Lett. 23, 1508-1510 (1998).
    [CrossRef]
  18. Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, "Growth and properties of Zn doped lithium niobate crystal," J. Cryst. Growth 233, 537-540 (2001).
    [CrossRef]
  19. D. H. Jundt, "Temperature-dependent Sellmeier equation for index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  20. C. S. Yu and A. H. Kung, "Grazing-incidence periodically poled LiNbO3 optical parametric oscillator," J. Opt. Soc. Am. B 16, 2233-2238 (1999).
    [CrossRef]
  21. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), pp. 285-293.
  22. P. S. Banks, M. D. Feit, and M. D. Perry, "High-intensity third-harmonic generation," J. Opt. Soc. Am. B 19, 102-118 (2002).
    [CrossRef]

2005 (1)

L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
[CrossRef]

2004 (2)

2002 (4)

2001 (1)

Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, "Growth and properties of Zn doped lithium niobate crystal," J. Cryst. Growth 233, 537-540 (2001).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

1996 (1)

1995 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1988 (1)

K. Kato, "Second-harmonic and sum-frequency generation to 4950 and 4589Å in KTP," IEEE J. Quantum Electron. QE-24, 3-4 (1988).
[CrossRef]

1986 (1)

1979 (1)

R. A. Baumgartner and R. L. Byer, "Optical parametric amplification," IEEE J. Quantum Electron. QE-15, 432-444 (1979).
[CrossRef]

1969 (2)

L. F. Johnson and A. A. Ballman, "Coherent emission from rare earth ions in electro-optic crystals," J. Appl. Phys. 40, 297-302 (1969).
[CrossRef]

S. E. Harris, "Tunable optical parametric oscillators," Proc. IEEE 58, 2096-2113 (1969).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Ballman, A. A.

L. F. Johnson and A. A. Ballman, "Coherent emission from rare earth ions in electro-optic crystals," J. Appl. Phys. 40, 297-302 (1969).
[CrossRef]

Banks, P. S.

Bashaw, M. C.

Baumgartner, R. A.

R. A. Baumgartner and R. L. Byer, "Optical parametric amplification," IEEE J. Quantum Electron. QE-15, 432-444 (1979).
[CrossRef]

Becouarn, L.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Bosenberg, W.

Brevignon, M.

Byer, R.

Byer, R. L.

Cheah, K. W.

Chen, J. C.

L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
[CrossRef]

Cho, Y. C.

L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
[CrossRef]

Chou, T. S.

L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
[CrossRef]

Dixon, G. J.

Du, Y.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Eckardt, R.

Eckardt, R. C.

Fan, T. Y.

Feit, M. D.

Fejer, M. M.

Guo, Y.-L.

X.-M. Liu, H.-Y. Zhang, Y.-L. Guo, and Y.-H. Li, "Optimal design and applications for quasi-phase-matching three-wave mixing," IEEE J. Quantum Electron. 38, 1225-1233 (2002).
[CrossRef]

Harris, S. E.

S. E. Harris, "Tunable optical parametric oscillators," Proc. IEEE 58, 2096-2113 (1969).
[CrossRef]

Hofmann, M. R.

Huang, J. Y. J.

Huang, S. L.

L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
[CrossRef]

Ji, S. H.

Johnson, L. F.

L. F. Johnson and A. A. Ballman, "Coherent emission from rare earth ions in electro-optic crystals," J. Appl. Phys. 40, 297-302 (1969).
[CrossRef]

Jundt, D. H.

D. H. Jundt, "Temperature-dependent Sellmeier equation for index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

D. H. Jundt, "Lithium niobate single crystal fiber growth and quasi-phase matching," Ph.D. dissertation (Stanford University, 1991).

Kato, K.

K. Kato, "Second-harmonic and sum-frequency generation to 4950 and 4589Å in KTP," IEEE J. Quantum Electron. QE-24, 3-4 (1988).
[CrossRef]

Kung, A. H.

Kuo, C. C.

L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
[CrossRef]

Lallier, E.

Lee, C. K.

Lee, H. W.

L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
[CrossRef]

Lee, L. M.

L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
[CrossRef]

Lehoux, J.

Li, K.

Li, K. F.

Li, M. H.

Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, "Growth and properties of Zn doped lithium niobate crystal," J. Cryst. Growth 233, 537-540 (2001).
[CrossRef]

Li, Y.-H.

X.-M. Liu, H.-Y. Zhang, Y.-L. Guo, and Y.-H. Li, "Optimal design and applications for quasi-phase-matching three-wave mixing," IEEE J. Quantum Electron. 38, 1225-1233 (2002).
[CrossRef]

Liu, X.-M.

X.-M. Liu, H.-Y. Zhang, Y.-L. Guo, and Y.-H. Li, "Optimal design and applications for quasi-phase-matching three-wave mixing," IEEE J. Quantum Electron. 38, 1225-1233 (2002).
[CrossRef]

Luo, L.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Meyn, J. P.

Miller, G. D.

Ming, N. B.

Myers, L.

Myers, L. E.

Pan, C. L.

Perry, M. D.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Pierce, J.

Struckmeier, J.

Taya, M.

Xu, P.

Xu, Y. H.

Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, "Growth and properties of Zn doped lithium niobate crystal," J. Cryst. Growth 233, 537-540 (2001).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), pp. 285-293.

Yu, C. S.

Zhang, H.-Y.

X.-M. Liu, H.-Y. Zhang, Y.-L. Guo, and Y.-H. Li, "Optimal design and applications for quasi-phase-matching three-wave mixing," IEEE J. Quantum Electron. 38, 1225-1233 (2002).
[CrossRef]

Zhang, J. Y.

Zhang, Y.

Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, "Growth and properties of Zn doped lithium niobate crystal," J. Cryst. Growth 233, 537-540 (2001).
[CrossRef]

Zhao, G.

Zhao, Y. Q.

Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, "Growth and properties of Zn doped lithium niobate crystal," J. Cryst. Growth 233, 537-540 (2001).
[CrossRef]

Zhu, S. N.

Zhu, Y. Y.

Zimmermann, J.

IEEE J. Quantum Electron. (4)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

R. A. Baumgartner and R. L. Byer, "Optical parametric amplification," IEEE J. Quantum Electron. QE-15, 432-444 (1979).
[CrossRef]

K. Kato, "Second-harmonic and sum-frequency generation to 4950 and 4589Å in KTP," IEEE J. Quantum Electron. QE-24, 3-4 (1988).
[CrossRef]

X.-M. Liu, H.-Y. Zhang, Y.-L. Guo, and Y.-H. Li, "Optimal design and applications for quasi-phase-matching three-wave mixing," IEEE J. Quantum Electron. 38, 1225-1233 (2002).
[CrossRef]

J. Appl. Phys. (1)

L. F. Johnson and A. A. Ballman, "Coherent emission from rare earth ions in electro-optic crystals," J. Appl. Phys. 40, 297-302 (1969).
[CrossRef]

J. Cryst. Growth (1)

Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, "Growth and properties of Zn doped lithium niobate crystal," J. Cryst. Growth 233, 537-540 (2001).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, "Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field," Opt. Commun. 253, 375-381 (2005).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Proc. IEEE (1)

S. E. Harris, "Tunable optical parametric oscillators," Proc. IEEE 58, 2096-2113 (1969).
[CrossRef]

Other (2)

D. H. Jundt, "Lithium niobate single crystal fiber growth and quasi-phase matching," Ph.D. dissertation (Stanford University, 1991).

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), pp. 285-293.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) QPM conditions for the first-order SHG and the third-order SFG (fundamental wavelength and its SHG) in the near-infrared range. (b) Simulated SHG and self-cascaded SHG + SFG efficiencies. The inset is an expanded view.

Fig. 2
Fig. 2

(a) Displacement current measurement setup. (b) Measured current and the applied voltage waveforms. The markers A, B, C, and D correspond to the current responses due to the applied voltage positive slope, the applied voltage positive slope added the induced charges increasing rate, the induced charges increasing rate, and the constant increasing rate of induced charges, respectively.

Fig. 3
Fig. 3

(a) Applied bias and the measured D ( t ) . (b) Simulated current waveform in relation to the applied E field.

Fig. 4
Fig. 4

(a) Measured and simulated stair currents in response to the applied voltage. (b) Measured peak current is linearly proportional to the normalized microswing amplitude.

Fig. 5
Fig. 5

(a) Microswing amplitude and CO 2 laser power during the ZnO -doped PPLNCF growth. (b) HF -etched Y-face image of a poled sample with 15.45 μ m domain pitch.

Fig. 6
Fig. 6

(a) Generated SHG and self-cascaded SHG + SFG . The peak efficiency of SHG is 12 % at 1428.4 nm and the peak of self-cascaded SHG + SFG is at 477.1 nm . (b) L I curves of the SHG and self-cascaded SHG + SFG . The inset shows the SHG + SFG power in logarithmic scale.

Fig. 7
Fig. 7

Blue–green light outputs by the self-cascaded SHG + SFG processes with wavelengths from 471.3 to 515 nm .

Fig. 8
Fig. 8

(a) Gradient-period QPM structure for bandwidth broadening. (b) Broadened-bandwidth dependence on the pitch increments of SHG, SFG, and self-cascaded SHG + SFG . (c) Self-cascaded SHG + SFG conversion efficiency versus the fundamental wavelength for domain pitches from 16.79 to 25.79 μ m .

Fig. 9
Fig. 9

Changes of GBPs for the SHG, SFG, and self-cascaded SHG + SFG , when bandwidths are getting wider.

Tables (1)

Tables Icon

Table 1 Parameters Used to Simulate the Displacement Current

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) = C e d V a ( t ) d t + d Q i ( t ) d t ,
Q i ( t ) = k 1 V a 2 ( t ) [ l o 2 D ( t ) ] 2 + k 2 t ( V s V t ) 2 ,
d A ω d z + i 2 κ A 2 ω * A 3 ω e i Δ k z = 0 ,
d A 2 ω * d z i 2 κ A ω A 3 ω * e i Δ k z = 0 ,
d A 3 ω d z + i 2 κ A ω A 2 ω e i Δ k z = 0 ,
κ d ( μ ε 0 ) ( ω ) ( 2 ω ) ( 3 ω ) n ω n 2 ω n 3 ω
d i = d 0 + i Δ d , i = 0 , 1 , 2 , , N - 2 , N - 1 ,

Metrics