Abstract

We have examined phase- and amplitude-modulated femtosecond laser pulses in the mid-infrared (MIR) region (310μm) generated by difference-frequency mixing both theoretically and experimentally. Transfer of the pulse shape from near infrared to MIR by a difference-frequency process was evaluated in detail for various spectra, linear chirps, phases, and optical delays of two pulses before the different frequency was compared and with experimentally obtained MIR shapes. In the experiment, the signal pulse of an optical parametric amplifier was shaped with an acousto-optic programmable dispersive filter and mixed in an AgGaS2 crystal with the idler pulse that was temporally stretched by passing it through a dispersion block to generate a shaped MIR pulse. The agreement between the theory and experiment was reasonable despite the complicated experimental procedure. It was demonstrated that the resultant MIR pulse shape could be completely different from the pulse shape before the difference-frequency generation. However, it is possible to reproduce any shape of MIR pulses by predicting the pulse shape using the present theoretical framework. This will allow us to manipulate rovibrational wave packets of real molecules for practical applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Brumer and M. Shapiro, "Coherence chemistry--controlling chemical-reactions with lasers," Acc. Chem. Res. 22, 407-413 (1989).
    [CrossRef]
  2. S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared-laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
    [CrossRef] [PubMed]
  3. D. J. Maas, D. I. Duncan, A. F. G. van der Meer, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by ultrashort infrared laser pulses," Chem. Phys. Lett. 270, 45-49 (1997).
    [CrossRef]
  4. D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
    [CrossRef]
  5. D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, "Rotational interference in vibrational ladder climbing in NO by chirped infrared laser pulses," Phys. Rev. A 60, 1351-1362 (1999).
    [CrossRef]
  6. V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
    [CrossRef]
  7. T. Witte, J. S. Yeston, M. Motzkus, E. J. Heilweil, and K. L. Kompa, "Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v>5)," Chem. Phys. Lett. 392, 156-161 (2004).
    [CrossRef]
  8. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004).
    [CrossRef] [PubMed]
  9. L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
    [CrossRef]
  10. L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
    [CrossRef]
  11. T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
    [CrossRef]
  12. C. Gollub, U. Troppmann, and R. de Vivie-Riedle, "The role of anharmonicity and coupling in quantum computing based on vibrationalqubits," New J. Phys. 8, 48 (2006).
    [CrossRef]
  13. C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, "Applying optimal control theory for elements of quantum computation in molecular systems," Chem. Phys. Lett. 343, 633-641 (2001).
    [CrossRef]
  14. C. M. Tesch and R. de Vivie-Riedle, "Quantum computation with vibrationally excited molecules," Phys. Rev. Lett. 89, 157901 (2002).
    [CrossRef] [PubMed]
  15. U. Troppmann, C. M. Tesch, and R. de Vivie-Riedle, "Preparation and addressability of molecular vibrational qubit states in the presence of anharmonic resonance," Chem. Phys. Lett. 378, 273-280 (2003).
    [CrossRef]
  16. C. M. Tesch and R. de Vivie-Riedle, "Vibrational molecular quantum computing: Basis set independence and theoretical realization of the Deutsch-Jozsa algorithm," J. Chem. Phys. 121, 12158-12168 (2004).
    [CrossRef] [PubMed]
  17. U. Troppmann and R. de Vivie-Riedle, "Mechanisms of local and global molecular quantum gates and their implementation prospects," J. Chem. Phys. 122, 154105 (2005).
    [CrossRef] [PubMed]
  18. B. M. R. Korff, U. Troppmann, K. L. Kompa, and R. de Vivie-Riedle, "Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime," J. Chem. Phys. 123, 244509 (2005).
    [CrossRef]
  19. M. Tsubouchi and T. Momose, "Rovibrational wave packet manipulation using shaped mid infrared femtosecond pulse toward quantum computing" (submitted to Phys. Rev. A).
  20. D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
    [CrossRef]
  21. M. M. Wefers and K. A. Nelson, "Analysis of programmable ultrashort wave-form generation using liquid-crystal spatial light modulators," J. Opt. Soc. Am. B 12, 1343-1362 (1995).
    [CrossRef]
  22. M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997).
    [CrossRef]
  23. F. Verluise, V. Laude, J. P. Huignard, P. Tournois, and A. Migus, "Arbitrary dispersion control of ultrashort optical pulses with acoustic waves," J. Opt. Soc. Am. B 17, 138-145 (2000).
    [CrossRef]
  24. D. Kaplan and P. Tournois, "Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping," J. Phys. IV 12, 69-75 (2002).
  25. A. M. Weiner and A. M. Kan'an, "Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms," IEEE J. Sel. Top. Quantum Electron. 4, 317-331 (1998).
    [CrossRef]
  26. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000), and references there in.
    [CrossRef]
  27. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
    [CrossRef]
  28. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
    [CrossRef]
  29. T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
    [CrossRef]
  30. H. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).
    [CrossRef] [PubMed]
  31. N. A. Naz, H. S. S. Hung, M. V. O'Connor, D. C. Hanna, and D. P. Shepherd, "Adaptively shaped mid-infrared pulses from a synchronously pumped optical parametric oscillator," Opt. Express 13, 8400-8405 (2005).
    [CrossRef] [PubMed]
  32. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000).
    [CrossRef]
  33. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, "Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation," Opt. Lett. 31, 838-840 (2006).
    [CrossRef] [PubMed]
  34. S. H. Shim, D. B. Strasfeld, and M. T. Zanni, "Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses," Opt. Express 14, 13120-13130 (2006).
    [CrossRef] [PubMed]
  35. A. M. Weiner, "Effect of group-velocity mismatch on the measurement of ultrashort optical pulses via 2nd harmonic-generation," IEEE J. Quantum Electron. 19, 1276-1283 (1983).
    [CrossRef]
  36. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, "AgGaS2 infrared parametric oscillator," Appl. Phys. Lett. 45, 313-315 (1984).
    [CrossRef]
  37. K. Kato, "Second-harmonic generation to 2048Å in β-BaB2O4," IEEE J. Quantum Electron. QE-22, 1013-1014 (1986).
    [CrossRef]
  38. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer, 1999).
  39. D. Keusters, H. S. Tan, P. O'Shea, E. Zeek, R. Trebino, and W. S. Warren, "Relative-phase ambiguities in measurements of ultrashort pulses with well-separated multiple frequency components," J. Opt. Soc. Am. B 20, 2226-2237 (2003).
    [CrossRef]
  40. X. Liu, A. P. Shreenath, M. Kimmel, R. Trebino, A. V. Smith, and S. Link, "Numerical simulations of optical parametric amplification cross-correlation frequency-resolved optical gating," J. Opt. Soc. Am. B 23, 318-325 (2006).
    [CrossRef]
  41. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000).
    [CrossRef]
  42. C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
    [CrossRef]
  43. W. Wasilewski, P. Wasylczyk, and C. Radzewicz, "Femtosecond laser pulses measured with a photodiode--FROG revisited," Appl. Phys. B 78, 589-592 (2004).
    [CrossRef]
  44. N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
    [CrossRef]
  45. N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
    [CrossRef]
  46. V. Blanchet, M. A. Bouchene, and B. Girard, "Temporal coherent control in the photoionization of Cs-2: theory and experiment," J. Chem. Phys. 108, 4862-4876 (1998).
    [CrossRef]
  47. K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, "High-precision molecular wave-packet interferometry with HgAr dimers," Phys. Rev. Lett. 91, 243003 (2003).
    [CrossRef] [PubMed]
  48. M. Fushitani, M. Bargheer, M. Guhr, and N. Schwentner, "Pump-probe spectroscopy with phase-locked pulses in the condensed phase: decoherence and control of vibrational wavepackets," Phys. Chem. Chem. Phys. 7, 3143-3149 (2005).
    [CrossRef] [PubMed]
  49. K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
    [CrossRef] [PubMed]
  50. H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, "Visualizing picometric quantum ripples of ultrafast wave-packet interference," Science 311, 1589-1592 (2006).
    [CrossRef] [PubMed]

2006 (6)

C. Gollub, U. Troppmann, and R. de Vivie-Riedle, "The role of anharmonicity and coupling in quantum computing based on vibrationalqubits," New J. Phys. 8, 48 (2006).
[CrossRef]

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, "Visualizing picometric quantum ripples of ultrafast wave-packet interference," Science 311, 1589-1592 (2006).
[CrossRef] [PubMed]

X. Liu, A. P. Shreenath, M. Kimmel, R. Trebino, A. V. Smith, and S. Link, "Numerical simulations of optical parametric amplification cross-correlation frequency-resolved optical gating," J. Opt. Soc. Am. B 23, 318-325 (2006).
[CrossRef]

S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, "Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation," Opt. Lett. 31, 838-840 (2006).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, and M. T. Zanni, "Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses," Opt. Express 14, 13120-13130 (2006).
[CrossRef] [PubMed]

2005 (4)

N. A. Naz, H. S. S. Hung, M. V. O'Connor, D. C. Hanna, and D. P. Shepherd, "Adaptively shaped mid-infrared pulses from a synchronously pumped optical parametric oscillator," Opt. Express 13, 8400-8405 (2005).
[CrossRef] [PubMed]

M. Fushitani, M. Bargheer, M. Guhr, and N. Schwentner, "Pump-probe spectroscopy with phase-locked pulses in the condensed phase: decoherence and control of vibrational wavepackets," Phys. Chem. Chem. Phys. 7, 3143-3149 (2005).
[CrossRef] [PubMed]

U. Troppmann and R. de Vivie-Riedle, "Mechanisms of local and global molecular quantum gates and their implementation prospects," J. Chem. Phys. 122, 154105 (2005).
[CrossRef] [PubMed]

B. M. R. Korff, U. Troppmann, K. L. Kompa, and R. de Vivie-Riedle, "Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime," J. Chem. Phys. 123, 244509 (2005).
[CrossRef]

2004 (4)

T. Witte, J. S. Yeston, M. Motzkus, E. J. Heilweil, and K. L. Kompa, "Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v>5)," Chem. Phys. Lett. 392, 156-161 (2004).
[CrossRef]

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004).
[CrossRef] [PubMed]

C. M. Tesch and R. de Vivie-Riedle, "Vibrational molecular quantum computing: Basis set independence and theoretical realization of the Deutsch-Jozsa algorithm," J. Chem. Phys. 121, 12158-12168 (2004).
[CrossRef] [PubMed]

W. Wasilewski, P. Wasylczyk, and C. Radzewicz, "Femtosecond laser pulses measured with a photodiode--FROG revisited," Appl. Phys. B 78, 589-592 (2004).
[CrossRef]

2003 (7)

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

U. Troppmann, C. M. Tesch, and R. de Vivie-Riedle, "Preparation and addressability of molecular vibrational qubit states in the presence of anharmonic resonance," Chem. Phys. Lett. 378, 273-280 (2003).
[CrossRef]

K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, "High-precision molecular wave-packet interferometry with HgAr dimers," Phys. Rev. Lett. 91, 243003 (2003).
[CrossRef] [PubMed]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

H. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).
[CrossRef] [PubMed]

D. Keusters, H. S. Tan, P. O'Shea, E. Zeek, R. Trebino, and W. S. Warren, "Relative-phase ambiguities in measurements of ultrashort pulses with well-separated multiple frequency components," J. Opt. Soc. Am. B 20, 2226-2237 (2003).
[CrossRef]

2002 (5)

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

D. Kaplan and P. Tournois, "Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping," J. Phys. IV 12, 69-75 (2002).

L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

C. M. Tesch and R. de Vivie-Riedle, "Quantum computation with vibrationally excited molecules," Phys. Rev. Lett. 89, 157901 (2002).
[CrossRef] [PubMed]

2001 (1)

C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, "Applying optimal control theory for elements of quantum computation in molecular systems," Chem. Phys. Lett. 343, 633-641 (2001).
[CrossRef]

2000 (6)

1999 (1)

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, "Rotational interference in vibrational ladder climbing in NO by chirped infrared laser pulses," Phys. Rev. A 60, 1351-1362 (1999).
[CrossRef]

1998 (4)

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

A. M. Weiner and A. M. Kan'an, "Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms," IEEE J. Sel. Top. Quantum Electron. 4, 317-331 (1998).
[CrossRef]

V. Blanchet, M. A. Bouchene, and B. Girard, "Temporal coherent control in the photoionization of Cs-2: theory and experiment," J. Chem. Phys. 108, 4862-4876 (1998).
[CrossRef]

1997 (2)

D. J. Maas, D. I. Duncan, A. F. G. van der Meer, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by ultrashort infrared laser pulses," Chem. Phys. Lett. 270, 45-49 (1997).
[CrossRef]

M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997).
[CrossRef]

1995 (1)

1992 (1)

N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
[CrossRef]

1991 (1)

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

1990 (1)

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared-laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

1989 (1)

P. Brumer and M. Shapiro, "Coherence chemistry--controlling chemical-reactions with lasers," Acc. Chem. Res. 22, 407-413 (1989).
[CrossRef]

1986 (1)

K. Kato, "Second-harmonic generation to 2048Å in β-BaB2O4," IEEE J. Quantum Electron. QE-22, 1013-1014 (1986).
[CrossRef]

1984 (1)

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, "AgGaS2 infrared parametric oscillator," Appl. Phys. Lett. 45, 313-315 (1984).
[CrossRef]

1983 (1)

A. M. Weiner, "Effect of group-velocity mismatch on the measurement of ultrashort optical pulses via 2nd harmonic-generation," IEEE J. Quantum Electron. 19, 1276-1283 (1983).
[CrossRef]

Alexandrou, A.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004).
[CrossRef] [PubMed]

Arrivo, S. M.

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

Bandrauk, A. D.

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared-laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

Bargheer, M.

M. Fushitani, M. Bargheer, M. Guhr, and N. Schwentner, "Pump-probe spectroscopy with phase-locked pulses in the condensed phase: decoherence and control of vibrational wavepackets," Phys. Chem. Chem. Phys. 7, 3143-3149 (2005).
[CrossRef] [PubMed]

Blanchet, V.

V. Blanchet, M. A. Bouchene, and B. Girard, "Temporal coherent control in the photoionization of Cs-2: theory and experiment," J. Chem. Phys. 108, 4862-4876 (1998).
[CrossRef]

Bouchene, M. A.

V. Blanchet, M. A. Bouchene, and B. Girard, "Temporal coherent control in the photoionization of Cs-2: theory and experiment," J. Chem. Phys. 108, 4862-4876 (1998).
[CrossRef]

Brumer, P.

P. Brumer and M. Shapiro, "Coherence chemistry--controlling chemical-reactions with lasers," Acc. Chem. Res. 22, 407-413 (1989).
[CrossRef]

Busch, F.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

Byer, R. L.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, "AgGaS2 infrared parametric oscillator," Appl. Phys. Lett. 45, 313-315 (1984).
[CrossRef]

Carlson, R. J.

N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
[CrossRef]

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Chelkowski, S.

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared-laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

Chen, T.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

Cheng, Z.

Chiba, H.

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, "Visualizing picometric quantum ripples of ultrafast wave-packet interference," Science 311, 1589-1592 (2006).
[CrossRef] [PubMed]

Cina, J. A.

N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
[CrossRef]

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Corkum, P. B.

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared-laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

de Vivie-Riedle, R.

C. Gollub, U. Troppmann, and R. de Vivie-Riedle, "The role of anharmonicity and coupling in quantum computing based on vibrationalqubits," New J. Phys. 8, 48 (2006).
[CrossRef]

U. Troppmann and R. de Vivie-Riedle, "Mechanisms of local and global molecular quantum gates and their implementation prospects," J. Chem. Phys. 122, 154105 (2005).
[CrossRef] [PubMed]

B. M. R. Korff, U. Troppmann, K. L. Kompa, and R. de Vivie-Riedle, "Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime," J. Chem. Phys. 123, 244509 (2005).
[CrossRef]

C. M. Tesch and R. de Vivie-Riedle, "Vibrational molecular quantum computing: Basis set independence and theoretical realization of the Deutsch-Jozsa algorithm," J. Chem. Phys. 121, 12158-12168 (2004).
[CrossRef] [PubMed]

U. Troppmann, C. M. Tesch, and R. de Vivie-Riedle, "Preparation and addressability of molecular vibrational qubit states in the presence of anharmonic resonance," Chem. Phys. Lett. 378, 273-280 (2003).
[CrossRef]

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

C. M. Tesch and R. de Vivie-Riedle, "Quantum computation with vibrationally excited molecules," Phys. Rev. Lett. 89, 157901 (2002).
[CrossRef] [PubMed]

C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, "Applying optimal control theory for elements of quantum computation in molecular systems," Chem. Phys. Lett. 343, 633-641 (2001).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer, 1999).

Du, M.

N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
[CrossRef]

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Dugan, M. A.

Duncan, D. I.

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

D. J. Maas, D. I. Duncan, A. F. G. van der Meer, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by ultrashort infrared laser pulses," Chem. Phys. Lett. 270, 45-49 (1997).
[CrossRef]

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, "AgGaS2 infrared parametric oscillator," Appl. Phys. Lett. 45, 313-315 (1984).
[CrossRef]

Eickemeyer, F.

Elsaesser, T.

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, "AgGaS2 infrared parametric oscillator," Appl. Phys. Lett. 45, 313-315 (1984).
[CrossRef]

Feigelson, R. S.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, "AgGaS2 infrared parametric oscillator," Appl. Phys. Lett. 45, 313-315 (1984).
[CrossRef]

Fleming, G. R.

N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
[CrossRef]

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Fraser, J. M.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004).
[CrossRef] [PubMed]

Frey, S.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

Fujiwara, K.

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

Fulmer, E. C.

Fushitani, M.

M. Fushitani, M. Bargheer, M. Guhr, and N. Schwentner, "Pump-probe spectroscopy with phase-locked pulses in the condensed phase: decoherence and control of vibrational wavepackets," Phys. Chem. Chem. Phys. 7, 3143-3149 (2005).
[CrossRef] [PubMed]

Fuss, W.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

Fuß, W.

L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

Girard, B.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, "Visualizing picometric quantum ripples of ultrafast wave-packet interference," Science 311, 1589-1592 (2006).
[CrossRef] [PubMed]

V. Blanchet, M. A. Bouchene, and B. Girard, "Temporal coherent control in the photoionization of Cs-2: theory and experiment," J. Chem. Phys. 108, 4862-4876 (1998).
[CrossRef]

Gollub, C.

C. Gollub, U. Troppmann, and R. de Vivie-Riedle, "The role of anharmonicity and coupling in quantum computing based on vibrationalqubits," New J. Phys. 8, 48 (2006).
[CrossRef]

Guhr, M.

M. Fushitani, M. Bargheer, M. Guhr, and N. Schwentner, "Pump-probe spectroscopy with phase-locked pulses in the condensed phase: decoherence and control of vibrational wavepackets," Phys. Chem. Chem. Phys. 7, 3143-3149 (2005).
[CrossRef] [PubMed]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer, 1999).

Hagihara, Y.

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

Hamm, P.

Hanna, D. C.

Heilweil, E. J.

T. Witte, J. S. Yeston, M. Motzkus, E. J. Heilweil, and K. L. Kompa, "Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v>5)," Chem. Phys. Lett. 392, 156-161 (2004).
[CrossRef]

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

Honda, M.

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

Hornung, T.

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

Huignard, J. P.

Hung, H. S. S.

Joffre, M.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004).
[CrossRef] [PubMed]

Kaindl, R. A.

Kan'an, A. M.

A. M. Weiner and A. M. Kan'an, "Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms," IEEE J. Sel. Top. Quantum Electron. 4, 317-331 (1998).
[CrossRef]

Kaplan, D.

D. Kaplan and P. Tournois, "Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping," J. Phys. IV 12, 69-75 (2002).

Kato, K.

K. Kato, "Second-harmonic generation to 2048Å in β-BaB2O4," IEEE J. Quantum Electron. QE-22, 1013-1014 (1986).
[CrossRef]

Katsuki, H.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, "Visualizing picometric quantum ripples of ultrafast wave-packet interference," Science 311, 1589-1592 (2006).
[CrossRef] [PubMed]

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

Keusters, D.

Kiefer, W.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

Kimmel, M.

Kleiman, V. D.

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

Kompa, K. L.

B. M. R. Korff, U. Troppmann, K. L. Kompa, and R. de Vivie-Riedle, "Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime," J. Chem. Phys. 123, 244509 (2005).
[CrossRef]

T. Witte, J. S. Yeston, M. Motzkus, E. J. Heilweil, and K. L. Kompa, "Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v>5)," Chem. Phys. Lett. 392, 156-161 (2004).
[CrossRef]

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

Korff, B. M. R.

B. M. R. Korff, U. Troppmann, K. L. Kompa, and R. de Vivie-Riedle, "Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime," J. Chem. Phys. 123, 244509 (2005).
[CrossRef]

Krasinski, J. S.

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
[CrossRef]

Kurtz, L.

C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, "Applying optimal control theory for elements of quantum computation in molecular systems," Chem. Phys. Lett. 343, 633-641 (2001).
[CrossRef]

Laude, V.

Link, S.

Liu, X.

Maas, D. J.

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, "Rotational interference in vibrational ladder climbing in NO by chirped infrared laser pulses," Phys. Rev. A 60, 1351-1362 (1999).
[CrossRef]

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

D. J. Maas, D. I. Duncan, A. F. G. van der Meer, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by ultrashort infrared laser pulses," Chem. Phys. Lett. 270, 45-49 (1997).
[CrossRef]

Martin, J. L.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004).
[CrossRef] [PubMed]

Materny, A.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

Matro, A.

N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
[CrossRef]

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Meier, C.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, "Visualizing picometric quantum ripples of ultrafast wave-packet interference," Science 311, 1589-1592 (2006).
[CrossRef] [PubMed]

Melinger, J. S.

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

Migus, A.

Momose, T.

M. Tsubouchi and T. Momose, "Rovibrational wave packet manipulation using shaped mid infrared femtosecond pulse toward quantum computing" (submitted to Phys. Rev. A).

Moore, C. B.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

Motzkus, M.

T. Witte, J. S. Yeston, M. Motzkus, E. J. Heilweil, and K. L. Kompa, "Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v>5)," Chem. Phys. Lett. 392, 156-161 (2004).
[CrossRef]

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

Naz, N. A.

Nelson, K. A.

Nikitin, E. E.

K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, "High-precision molecular wave-packet interferometry with HgAr dimers," Phys. Rev. Lett. 91, 243003 (2003).
[CrossRef] [PubMed]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer, 1999).

Noordam, L. D.

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, "Rotational interference in vibrational ladder climbing in NO by chirped infrared laser pulses," Phys. Rev. A 60, 1351-1362 (1999).
[CrossRef]

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

D. J. Maas, D. I. Duncan, A. F. G. van der Meer, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by ultrashort infrared laser pulses," Chem. Phys. Lett. 270, 45-49 (1997).
[CrossRef]

O'Connor, M. V.

Ohmori, K.

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, "Visualizing picometric quantum ripples of ultrafast wave-packet interference," Science 311, 1589-1592 (2006).
[CrossRef] [PubMed]

K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, "High-precision molecular wave-packet interferometry with HgAr dimers," Phys. Rev. Lett. 91, 243003 (2003).
[CrossRef] [PubMed]

O'Shea, P.

Proch, D.

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

Radzewicz, C.

W. Wasilewski, P. Wasylczyk, and C. Radzewicz, "Femtosecond laser pulses measured with a photodiode--FROG revisited," Appl. Phys. B 78, 589-592 (2004).
[CrossRef]

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
[CrossRef]

Reimann, K.

Rice, S. A.

K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, "High-precision molecular wave-packet interferometry with HgAr dimers," Phys. Rev. Lett. 91, 243003 (2003).
[CrossRef] [PubMed]

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Romerorochin, V.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Route, R. K.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, "AgGaS2 infrared parametric oscillator," Appl. Phys. Lett. 45, 313-315 (1984).
[CrossRef]

Ruggiero, A. J.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Sato, Y.

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, "High-precision molecular wave-packet interferometry with HgAr dimers," Phys. Rev. Lett. 91, 243003 (2003).
[CrossRef] [PubMed]

Scherer, N. F.

N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
[CrossRef]

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Schwentner, N.

M. Fushitani, M. Bargheer, M. Guhr, and N. Schwentner, "Pump-probe spectroscopy with phase-locked pulses in the condensed phase: decoherence and control of vibrational wavepackets," Phys. Chem. Chem. Phys. 7, 3143-3149 (2005).
[CrossRef] [PubMed]

Shapiro, M.

P. Brumer and M. Shapiro, "Coherence chemistry--controlling chemical-reactions with lasers," Acc. Chem. Res. 22, 407-413 (1989).
[CrossRef]

Shepherd, D. P.

Shim, S. H.

Shreenath, A. P.

Smith, A. V.

Spielmann, C.

Strasfeld, D. B.

Tan, H. S.

Tesch, C. M.

C. M. Tesch and R. de Vivie-Riedle, "Vibrational molecular quantum computing: Basis set independence and theoretical realization of the Deutsch-Jozsa algorithm," J. Chem. Phys. 121, 12158-12168 (2004).
[CrossRef] [PubMed]

U. Troppmann, C. M. Tesch, and R. de Vivie-Riedle, "Preparation and addressability of molecular vibrational qubit states in the presence of anharmonic resonance," Chem. Phys. Lett. 378, 273-280 (2003).
[CrossRef]

C. M. Tesch and R. de Vivie-Riedle, "Quantum computation with vibrationally excited molecules," Phys. Rev. Lett. 89, 157901 (2002).
[CrossRef] [PubMed]

C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, "Applying optimal control theory for elements of quantum computation in molecular systems," Chem. Phys. Lett. 343, 633-641 (2001).
[CrossRef]

Tournois, P.

Trebino, R.

Troppmann, U.

C. Gollub, U. Troppmann, and R. de Vivie-Riedle, "The role of anharmonicity and coupling in quantum computing based on vibrationalqubits," New J. Phys. 8, 48 (2006).
[CrossRef]

U. Troppmann and R. de Vivie-Riedle, "Mechanisms of local and global molecular quantum gates and their implementation prospects," J. Chem. Phys. 122, 154105 (2005).
[CrossRef] [PubMed]

B. M. R. Korff, U. Troppmann, K. L. Kompa, and R. de Vivie-Riedle, "Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime," J. Chem. Phys. 123, 244509 (2005).
[CrossRef]

U. Troppmann, C. M. Tesch, and R. de Vivie-Riedle, "Preparation and addressability of molecular vibrational qubit states in the presence of anharmonic resonance," Chem. Phys. Lett. 378, 273-280 (2003).
[CrossRef]

Tsubouchi, M.

M. Tsubouchi and T. Momose, "Rovibrational wave packet manipulation using shaped mid infrared femtosecond pulse toward quantum computing" (submitted to Phys. Rev. A).

Tull, J. X.

Ueda, K.

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

van der Meer, A. F. G.

D. J. Maas, D. I. Duncan, A. F. G. van der Meer, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by ultrashort infrared laser pulses," Chem. Phys. Lett. 270, 45-49 (1997).
[CrossRef]

van der Zande, W. J.

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

D. J. Maas, D. I. Duncan, A. F. G. van der Meer, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by ultrashort infrared laser pulses," Chem. Phys. Lett. 270, 45-49 (1997).
[CrossRef]

Ventalon, C.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004).
[CrossRef] [PubMed]

Verluise, F.

Vos, M. H.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004).
[CrossRef] [PubMed]

Vrakking, M. J. J.

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, "Rotational interference in vibrational ladder climbing in NO by chirped infrared laser pulses," Phys. Rev. A 60, 1351-1362 (1999).
[CrossRef]

Vrijen, R. B.

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

Warren, W. S.

Wasilewski, W.

W. Wasilewski, P. Wasylczyk, and C. Radzewicz, "Femtosecond laser pulses measured with a photodiode--FROG revisited," Appl. Phys. B 78, 589-592 (2004).
[CrossRef]

Wasylczyk, P.

W. Wasilewski, P. Wasylczyk, and C. Radzewicz, "Femtosecond laser pulses measured with a photodiode--FROG revisited," Appl. Phys. B 78, 589-592 (2004).
[CrossRef]

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
[CrossRef]

Wefers, M. M.

Weiner, A. M.

F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
[CrossRef]

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000), and references there in.
[CrossRef]

A. M. Weiner and A. M. Kan'an, "Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms," IEEE J. Sel. Top. Quantum Electron. 4, 317-331 (1998).
[CrossRef]

A. M. Weiner, "Effect of group-velocity mismatch on the measurement of ultrashort optical pulses via 2nd harmonic-generation," IEEE J. Quantum Electron. 19, 1276-1283 (1983).
[CrossRef]

Windhorn, L.

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

Witte, T.

T. Witte, J. S. Yeston, M. Motzkus, E. J. Heilweil, and K. L. Kompa, "Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v>5)," Chem. Phys. Lett. 392, 156-161 (2004).
[CrossRef]

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

Woerner, M.

Wohlleben, W.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

Wurm, M.

Yeston, J. S.

T. Witte, J. S. Yeston, M. Motzkus, E. J. Heilweil, and K. L. Kompa, "Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v>5)," Chem. Phys. Lett. 392, 156-161 (2004).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

Zanni, M. T.

Zeek, E.

Zeidler, D.

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

Ziegler, L. D.

N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
[CrossRef]

Acc. Chem. Res. (1)

P. Brumer and M. Shapiro, "Coherence chemistry--controlling chemical-reactions with lasers," Acc. Chem. Res. 22, 407-413 (1989).
[CrossRef]

Appl. Phys. B (2)

W. Wasilewski, P. Wasylczyk, and C. Radzewicz, "Femtosecond laser pulses measured with a photodiode--FROG revisited," Appl. Phys. B 78, 589-592 (2004).
[CrossRef]

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, "AgGaS2 infrared parametric oscillator," Appl. Phys. Lett. 45, 313-315 (1984).
[CrossRef]

Chem. Phys. (1)

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

Chem. Phys. Lett. (6)

T. Witte, J. S. Yeston, M. Motzkus, E. J. Heilweil, and K. L. Kompa, "Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v>5)," Chem. Phys. Lett. 392, 156-161 (2004).
[CrossRef]

C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, "Applying optimal control theory for elements of quantum computation in molecular systems," Chem. Phys. Lett. 343, 633-641 (2001).
[CrossRef]

U. Troppmann, C. M. Tesch, and R. de Vivie-Riedle, "Preparation and addressability of molecular vibrational qubit states in the presence of anharmonic resonance," Chem. Phys. Lett. 378, 273-280 (2003).
[CrossRef]

D. J. Maas, D. I. Duncan, A. F. G. van der Meer, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by ultrashort infrared laser pulses," Chem. Phys. Lett. 270, 45-49 (1997).
[CrossRef]

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yeston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Kato, "Second-harmonic generation to 2048Å in β-BaB2O4," IEEE J. Quantum Electron. QE-22, 1013-1014 (1986).
[CrossRef]

A. M. Weiner, "Effect of group-velocity mismatch on the measurement of ultrashort optical pulses via 2nd harmonic-generation," IEEE J. Quantum Electron. 19, 1276-1283 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. M. Weiner and A. M. Kan'an, "Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms," IEEE J. Sel. Top. Quantum Electron. 4, 317-331 (1998).
[CrossRef]

J. Chem. Phys. (9)

D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, "Optimal control of ground-state dynamics in polymers," J. Chem. Phys. 116, 5231-5235 (2002).
[CrossRef]

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romerorochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry--Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

N. F. Scherer, A. Matro, L. D. Ziegler, M. Du, R. J. Carlson, J. A. Cina, and G. R. Fleming, "Fluorescence-detected wave packet interferometry. 2. Role of rotations and determination of the susceptibility," J. Chem. Phys. 96, 4180-4194 (1992).
[CrossRef]

V. Blanchet, M. A. Bouchene, and B. Girard, "Temporal coherent control in the photoionization of Cs-2: theory and experiment," J. Chem. Phys. 108, 4862-4876 (1998).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

C. M. Tesch and R. de Vivie-Riedle, "Vibrational molecular quantum computing: Basis set independence and theoretical realization of the Deutsch-Jozsa algorithm," J. Chem. Phys. 121, 12158-12168 (2004).
[CrossRef] [PubMed]

U. Troppmann and R. de Vivie-Riedle, "Mechanisms of local and global molecular quantum gates and their implementation prospects," J. Chem. Phys. 122, 154105 (2005).
[CrossRef] [PubMed]

B. M. R. Korff, U. Troppmann, K. L. Kompa, and R. de Vivie-Riedle, "Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime," J. Chem. Phys. 123, 244509 (2005).
[CrossRef]

J. Opt. Soc. Am. B (6)

J. Phys. IV (1)

D. Kaplan and P. Tournois, "Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping," J. Phys. IV 12, 69-75 (2002).

New J. Phys. (1)

C. Gollub, U. Troppmann, and R. de Vivie-Riedle, "The role of anharmonicity and coupling in quantum computing based on vibrationalqubits," New J. Phys. 8, 48 (2006).
[CrossRef]

Opt. Commun. (1)

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Chem. Chem. Phys. (1)

M. Fushitani, M. Bargheer, M. Guhr, and N. Schwentner, "Pump-probe spectroscopy with phase-locked pulses in the condensed phase: decoherence and control of vibrational wavepackets," Phys. Chem. Chem. Phys. 7, 3143-3149 (2005).
[CrossRef] [PubMed]

Phys. Rev. A (1)

D. J. Maas, M. J. J. Vrakking, and L. D. Noordam, "Rotational interference in vibrational ladder climbing in NO by chirped infrared laser pulses," Phys. Rev. A 60, 1351-1362 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared-laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

C. M. Tesch and R. de Vivie-Riedle, "Quantum computation with vibrationally excited molecules," Phys. Rev. Lett. 89, 157901 (2002).
[CrossRef] [PubMed]

K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, "Real-time observation of phase-controlled molecular wave-packet interference," Phys. Rev. Lett. 96, 093002 (2006).
[CrossRef] [PubMed]

K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, "High-precision molecular wave-packet interferometry with HgAr dimers," Phys. Rev. Lett. 91, 243003 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000), and references there in.
[CrossRef]

Science (1)

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, "Visualizing picometric quantum ripples of ultrafast wave-packet interference," Science 311, 1589-1592 (2006).
[CrossRef] [PubMed]

Other (2)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer, 1999).

M. Tsubouchi and T. Momose, "Rovibrational wave packet manipulation using shaped mid infrared femtosecond pulse toward quantum computing" (submitted to Phys. Rev. A).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculated DFG spectra as a function of the optical delay τ. Positive time delay indicates that the idler light is prior to the signal light. Both the signal and idler light have a Gaussian spectral shape. The center frequency and the spectral width of the signal light are set to be 7500 and 108 cm 1 (FWHM). The left, middle, and right traces correspond to the signal chirp of + 50 000 , 0, and 50 000 fs 2 , respectively. The center frequency of the idler pulse is 5400 cm 1 . The chirp and spectral width of idler pulse are (a) x I = 0 fs 2 and a I = 60 cm 1 and (b) 35 000 fs 2 and 60 cm 1 . The thickness of the AgGaS 2 crystal is L = 2 mm .

Fig. 2
Fig. 2

Calculated DFG spectra as a function of the optical delay τ. The double signal pulse and the Gaussian-shaped idler pulse are assumed. The pulse width of each pulse in the double signal pulse is b S = 50 fs , and the time interval is t S = 1 ps . The center frequencies of the signal and idler pulses are 7500 and 5400 cm 1 , respectively. The relative phases ϕ of the double signal pulses are 0 (left), π 2 (middle), and π (right column). The chirp and spectral width of the idler pulse are (a) x I = 0 fs 2 and a I = 60 cm 1 , (b) 0 fs 2 and 10 cm 1 , and (c) 35 000 fs 2 and 60 cm 1 , respectively.

Fig. 3
Fig. 3

Cross sections of the traces of the calculated DFG spectra at the optical delay τ = 0 ps (left column) and its Fourier transformed temporal profiles (right). Panels (a) and (b) are the cross sections of the traces shown in Figs. 2b, 2c, respectively. The solid and dashed curves show the intensity and phase of the electric field, respectively. The relative phase of the signal double pulse is shown on the left-hand side of each trace.

Fig. 4
Fig. 4

(a)–(c) Calculated DFG and (d)–(f) SFG spectra as a function of the optical delay τ, when the signal pulse has a comb-shaped spectrum consisting of the peaks with a FWHM of 5 cm 1 and a spacing of 50 cm 1 . The center frequency and the overall spectral width of the signal pulse are 7500 and 108 cm 1 (FWHM), respectively. The linear chirp of the signal is + 50 000 fs 2 . The Gaussian shape is assumed for the idler pulse. The chirp and spectral width of the idler pulse are (a) and (d) x I = 0 fs 2 and a I = 60 cm 1 , (b) and (e) 0 fs 2 and 10 cm 1 , and (c) and (f) 35 000 fs 2 and 60 cm 1 , respectively.

Fig. 5
Fig. 5

(a) FT-IR spectrum of the signal pulse. The filled circles show the observed spectrum, and the solid curve is the least-squares fit to the Gaussian function. (b) Autocorrelation traces of the signal pulse for zero (solid curve) and negative (dashed curve) chirp, 50 000 fs 2 . DFG spectra using a Gaussian-shaped signal pulse with a linear chirp of + 50 000 and 50 000 fs 2 are shown in (c) and (d), respectively. The optical delay of the signal pulse from the idler is shown on the right-hand side of each trace where τ 0 is 0.133 ps . Solid and dashed curves show the observed and calculated results, respectively. Observed DFG spectra as a function of the optical delay τ are shown in (e) and (f) for the signal chirp of + 50 000 and 50 000 fs 2 , respectively.

Fig. 6
Fig. 6

(a) Measured SHG-FROG traces for shaped MIR pulses using a Gaussian-shaped signal pulse with a linear chirp of + 50 000 fs 2 (left panel) and 50 000 fs 2 (right panel). The vertical axis shows the SHG wavenumbers, and the horizontal axis shows the optical delays. (b) Retrieved SHG-FROG traces. (c) Autocorrelation traces for the pulses shown in (a). Dots and thick curves show the observed and retrieved profiles, respectively. The thin curves show the simulated profiles. (d) Shaped MIR spectra for the pulses shown in (a). Dots show the observed FT-IR spectra. Thick and thin solid curves are the retrieved and simulated spectra, respectively. Thick and thin dashed curves are the retrieved and simulated phase profiles, respectively.

Fig. 7
Fig. 7

(a) Autocorrelations of the double pulses. The pulse spacing t S is shown on the right-hand side of each trace. Thick and thin curves show the autocorrelation traces for the signal and the resultant DFG pulse, respectively. FT-IR spectra of the double signal pulses with 0.5 and 1 ps pulse spacing are also shown in (b) and (c), respectively. The relative phase of the front pulse with respect to the delayed pulse is shown on the left-hand side of each trace. Observed DFG output spectra using double signal pulses with 0.5 and 1.0 ps spacing, are shown in (d) and (e), respectively, at a fixed time delay τ. Thick solid and dashed curves show the observed and calculated spectra, respectively. Thin dashed curves are the calculated phase profiles. Vertical lines in (b) to (e) indicate the spectral shift with respect to the relative phase.

Fig. 8
Fig. 8

(a) FT-IR spectrum of the comb-shaped signal pulse. (b) Autocorrelation traces of the comb-shaped signal pulse for zero (solid curve) and negative (dashed curve) chirp, 50 000 fs 2 . (c) Spectra of DFG output using a comb-shaped signal pulse with a linear chirp of + 50 000 fs 2 . Spectra of DFG using the signal with a chirp of (d) + 10 000 , (e) 10 000 , and (f) 50 000 fs 2 are also shown. The optical delay of the signal pulse from the idler is shown on the right-hand side of each trace where τ 0 is 0.133 ps . Solid and dashed curves show the observed and calculated spectra, respectively.

Fig. 9
Fig. 9

(a) FT-IR spectrum of the signal pulse with double peak in frequency domain. (b) Autocorrelation trace of the signal pulse. (c) Spectra of DFG output using a signal pulse with double peak, at a fixed time delay τ. The relative phase of the blueshifted peak with respect to the redshifted peak is shown on the left-hand side of each trace. Solid and dashed curves show the observed and calculated spectra, respectively. (d) Calculated spectra of DFG output using a signal pulse with double peak at a fixed time delay τ. Solid and dashed curves show the intensity and phase profiles, respectively. Vertical lines in (c) indicate the spectral shift with respect to the relative phase.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

z E DFG e ( Ω , z ; τ , θ ) = i Ω χ ( 2 ) c 2 k DFG d ω E S e ( ω ) E I o * ( ω Ω ) exp ( i ω τ ) exp [ i Δ k ( Ω , ω , θ ) z ] ,
z E SFG e ( Ω , z ; τ , θ ) = i Ω χ ( 2 ) c 2 k SFG d ω E S e ( ω ) E I o ( Ω ω ) exp ( i ω τ ) exp [ i Δ k ( Ω , ω ; θ ) z ] ,
Δ k ( Ω , ω ; θ ) = k S e ( ω ; θ ) + k I o ( ω Ω ; θ ) + k DFG e ( Ω ; θ )
Δ k ( Ω , ω ; θ ) = k S e ( ω ; θ ) + k I o ( Ω ω ; θ ) k SFG e ( Ω ; θ )
E DFG e ( Ω ; τ , L , θ ) d ω E S e ( ω ) E I o * ( ω Ω ) exp ( i ω τ ) exp ( i Δ k L 2 ) sinc ( Δ k L 2 ) ,
E SFG e ( Ω ; τ , L , θ ) d ω E S e ( ω ) E I o ( Ω ω ) exp ( i ω τ ) exp ( i Δ k L 2 ) sinc ( Δ k L 2 ) ,
E I o ( ω ) = E I 0 exp [ ( ω ω I ) 2 2 a I 2 ] exp [ i x I ( ω ω I ) 2 2 ] ,
ε I o ( t ) d ω E I o ( ω ) exp ( i ω t ) = E I 0 ( 1 2 a I 2 i x I 2 ) 1 2 exp ( t 2 2 b I 2 ) exp ( i ω I t ) exp ( i γ I t 2 2 ) ,
E S e ( ω ) = E S 0 exp [ ( ω ω S ) 2 2 a S 2 ] exp [ i x S ( ω ω S ) 2 2 ] ,
ε S ( t ) = E S 0 [ exp { ( t t S 2 ) 2 2 b S 2 } + exp { ( t + t S 2 ) 2 2 b S 2 } exp ( i ϕ ) ] exp ( i ω S t ) ,
E S ( ω ) d t ε S ( t ) exp ( i ω t ) E S 0 b S exp { b S 2 ( ω ω S ) 2 2 } [ exp { i t S ( ω ω S ) 2 } + exp { i t S ( ω ω S ) 2 i ϕ } ] .
I S ( ω ) = E S ( ω ) 2 b S 2 exp { b S 2 ( ω ω S ) 2 } [ 1 + cos { t S ( ω ω S ) ϕ } ] .
E S ( ω ) = E S 0 exp { ( ω ω S ) 2 2 a S 2 } exp { i x S ( ω ω S ) 2 2 } j exp [ { ω ( j d + ω S 0 ) } 2 2 a S 0 2 ] .
E S ( ω ) = E S 0 + exp [ ( ω ω S + d ) 2 2 a S 0 2 ] + E S 0 exp [ ( ω ω S ) 2 2 a S 0 2 ] exp ( i ϕ ) .

Metrics