Abstract

Recently, widely broadened supercontinuum (SC) has been generated using ultrashort pulse and highly nonlinear fibers. However, inherent noise and fine structures have been the problem for the application of SC. We demonstrate wideband, low-noise, highly coherent, and ultraflat SC generation using soliton pulse and normal dispersion highly nonlinear fibers. Characteristics of generated SC are experimentally evaluated, and they are compared with those of the conventional SC. Octave spanning high-quality SC is also generated using high-power soliton pulse.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  2. N. Nishizawa and T. Goto, "Compact system of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," IEEE Photon. Technol. Lett. 11, 325-327 (1999).
    [CrossRef]
  3. R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).
    [CrossRef]
  4. N. Nishizawa, R. Okamura, and T. Goto, "Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," Jpn. J. Appl. Phys., Part 1 38, 4768-4771 (1999).
    [CrossRef]
  5. M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg, "Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber," Opt. Lett. 24, 1428-1430 (1999).
    [CrossRef]
  6. N. Nishizawa, Y. Ito, and T. Goto, "Wavelength tunable femtosecond soliton pulse generation for wavelengths of 0.78-1.0μm using photonic crystal fibers and a ultrashort fiber laser," Jpn. J. Appl. Phys., Part 1 42, 449-452 (2003).
    [CrossRef]
  7. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06-1.33μm based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286-1294 (2002).
    [CrossRef]
  8. H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fiber-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
    [CrossRef]
  9. J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7μm wavelength tunable ultrashort pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber," IEEE Photon. Technol. Lett. 21, 2284-2286 (2006).
    [CrossRef]
  10. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
    [CrossRef]
  11. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  12. K. Isobe, W. Watanabe, S. Matunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," J. Appl. Phys. 44, L167-L169 (2005).
    [CrossRef]
  13. Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  14. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  15. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  16. N. Nishizawa and T. Goto, "Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001).
    [CrossRef]
  17. J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, "Generation of high power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
    [CrossRef]
  18. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
    [CrossRef]
  19. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  20. N. R. Newbury, B. R. Washburn, and K. L. Corwin, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
    [CrossRef] [PubMed]
  21. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
    [CrossRef]
  22. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
    [CrossRef] [PubMed]
  23. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5μm," Opt. Lett. 29, 2846-2848 (2004).
    [CrossRef]
  24. J. Takayanagi and N. Nishizawa, "Generation of widely and flatly broadened, low-noise and high-coherence supercontinuum in all fiber system," Jpn. J. Appl. Phys., Part 2 45, L441-L443 (2006).
    [CrossRef]
  25. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  26. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2000).
  27. F. Lu and W. H. Knox, "Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers," Opt. Express 12, 347-353 (2004).
    [CrossRef] [PubMed]

2006

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7μm wavelength tunable ultrashort pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber," IEEE Photon. Technol. Lett. 21, 2284-2286 (2006).
[CrossRef]

J. Takayanagi and N. Nishizawa, "Generation of widely and flatly broadened, low-noise and high-coherence supercontinuum in all fiber system," Jpn. J. Appl. Phys., Part 2 45, L441-L443 (2006).
[CrossRef]

2005

K. Isobe, W. Watanabe, S. Matunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," J. Appl. Phys. 44, L167-L169 (2005).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, "Generation of high power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

2004

2003

N. Nishizawa, Y. Ito, and T. Goto, "Wavelength tunable femtosecond soliton pulse generation for wavelengths of 0.78-1.0μm using photonic crystal fibers and a ultrashort fiber laser," Jpn. J. Appl. Phys., Part 1 42, 449-452 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, and K. L. Corwin, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[CrossRef] [PubMed]

2002

2001

2000

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

1999

N. Nishizawa and T. Goto, "Compact system of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

N. Nishizawa, R. Okamura, and T. Goto, "Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," Jpn. J. Appl. Phys., Part 1 38, 4768-4771 (1999).
[CrossRef]

M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg, "Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber," Opt. Lett. 24, 1428-1430 (1999).
[CrossRef]

1986

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).
[CrossRef]

Buckley, J.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fiber-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Chau, A. H. L.

Chen, Y.

Chong, A.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fiber-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Chudoba, C.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, and K. L. Corwin, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[CrossRef] [PubMed]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Fermann, M. E.

Fujimoto, J. G.

Fukui, K.

K. Isobe, W. Watanabe, S. Matunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," J. Appl. Phys. 44, L167-L169 (2005).
[CrossRef]

Furusawa, K.

Galvanauskas, A.

Ghanta, R. K.

Goldberg, L.

Goto, T.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, "Generation of high power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
[CrossRef] [PubMed]

N. Nishizawa, Y. Ito, and T. Goto, "Wavelength tunable femtosecond soliton pulse generation for wavelengths of 0.78-1.0μm using photonic crystal fibers and a ultrashort fiber laser," Jpn. J. Appl. Phys., Part 1 42, 449-452 (2003).
[CrossRef]

N. Nishizawa and T. Goto, "Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001).
[CrossRef]

N. Nishizawa and T. Goto, "Compact system of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

N. Nishizawa, R. Okamura, and T. Goto, "Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," Jpn. J. Appl. Phys., Part 1 38, 4768-4771 (1999).
[CrossRef]

Gu, X.

Hansch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Harter, D.

Hartl, I.

Harvey, J. D.

Higashi, T.

K. Isobe, W. Watanabe, S. Matunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," J. Appl. Phys. 44, L167-L169 (2005).
[CrossRef]

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Hori, T.

Hsiung, P.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Ippen, E. P.

Isobe, K.

K. Isobe, W. Watanabe, S. Matunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," J. Appl. Phys. 44, L167-L169 (2005).
[CrossRef]

Ito, Y.

N. Nishizawa, Y. Ito, and T. Goto, "Wavelength tunable femtosecond soliton pulse generation for wavelengths of 0.78-1.0μm using photonic crystal fibers and a ultrashort fiber laser," Jpn. J. Appl. Phys., Part 1 42, 449-452 (2003).
[CrossRef]

Itoh, K.

K. Isobe, W. Watanabe, S. Matunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," J. Appl. Phys. 44, L167-L169 (2005).
[CrossRef]

Kimmel, M.

Knight, J. C.

Knox, W. H.

Ko, T. H.

Lefort, L.

Leonhardt, R.

Li, X. D.

Lim, H.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fiber-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Lu, F.

Matunaga, S.

K. Isobe, W. Watanabe, S. Matunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," J. Appl. Phys. 44, L167-L169 (2005).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Monro, T. M.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Nagai, H.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, "Generation of high power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, and K. L. Corwin, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[CrossRef] [PubMed]

Nishizawa, N.

J. Takayanagi and N. Nishizawa, "Generation of widely and flatly broadened, low-noise and high-coherence supercontinuum in all fiber system," Jpn. J. Appl. Phys., Part 2 45, L441-L443 (2006).
[CrossRef]

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7μm wavelength tunable ultrashort pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber," IEEE Photon. Technol. Lett. 21, 2284-2286 (2006).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, "Generation of high power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
[CrossRef] [PubMed]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5μm," Opt. Lett. 29, 2846-2848 (2004).
[CrossRef]

N. Nishizawa, Y. Ito, and T. Goto, "Wavelength tunable femtosecond soliton pulse generation for wavelengths of 0.78-1.0μm using photonic crystal fibers and a ultrashort fiber laser," Jpn. J. Appl. Phys., Part 1 42, 449-452 (2003).
[CrossRef]

N. Nishizawa and T. Goto, "Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001).
[CrossRef]

N. Nishizawa, R. Okamura, and T. Goto, "Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," Jpn. J. Appl. Phys., Part 1 38, 4768-4771 (1999).
[CrossRef]

N. Nishizawa and T. Goto, "Compact system of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Okamura, R.

N. Nishizawa, R. Okamura, and T. Goto, "Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," Jpn. J. Appl. Phys., Part 1 38, 4768-4771 (1999).
[CrossRef]

O'Shea, P.

Price, J. H. V.

Ranka, J. K.

Richardson, D. J.

Russell, P. St. J.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Sato, K. I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Shreenath, A. P.

Stentz, A. J.

Stock, M. L.

Sugiura, T.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7μm wavelength tunable ultrashort pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber," IEEE Photon. Technol. Lett. 21, 2284-2286 (2006).
[CrossRef]

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Takayanagi, J.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7μm wavelength tunable ultrashort pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber," IEEE Photon. Technol. Lett. 21, 2284-2286 (2006).
[CrossRef]

J. Takayanagi and N. Nishizawa, "Generation of widely and flatly broadened, low-noise and high-coherence supercontinuum in all fiber system," Jpn. J. Appl. Phys., Part 2 45, L441-L443 (2006).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, "Generation of high power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
[CrossRef] [PubMed]

Trebino, R.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Wadsworth, W. J.

Washburn, B. R.

Watanabe, W.

K. Isobe, W. Watanabe, S. Matunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," J. Appl. Phys. 44, L167-L169 (2005).
[CrossRef]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Windeler, R. S.

Wise, F. W.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fiber-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Wong, K. K.

Xu, L.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Yoshida, M.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7μm wavelength tunable ultrashort pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber," IEEE Photon. Technol. Lett. 21, 2284-2286 (2006).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, "Generation of high power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

Zeek, E.

Electron. Lett.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fiber-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7μm wavelength tunable ultrashort pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber," IEEE Photon. Technol. Lett. 21, 2284-2286 (2006).
[CrossRef]

N. Nishizawa and T. Goto, "Compact system of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, "Generation of high power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

J. Appl. Phys.

K. Isobe, W. Watanabe, S. Matunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," J. Appl. Phys. 44, L167-L169 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys., Part 1

N. Nishizawa, R. Okamura, and T. Goto, "Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers," Jpn. J. Appl. Phys., Part 1 38, 4768-4771 (1999).
[CrossRef]

N. Nishizawa, Y. Ito, and T. Goto, "Wavelength tunable femtosecond soliton pulse generation for wavelengths of 0.78-1.0μm using photonic crystal fibers and a ultrashort fiber laser," Jpn. J. Appl. Phys., Part 1 42, 449-452 (2003).
[CrossRef]

Jpn. J. Appl. Phys., Part 2

N. Nishizawa and T. Goto, "Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001).
[CrossRef]

J. Takayanagi and N. Nishizawa, "Generation of widely and flatly broadened, low-noise and high-coherence supercontinuum in all fiber system," Jpn. J. Appl. Phys., Part 2 45, L441-L443 (2006).
[CrossRef]

Nature

Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5μm," Opt. Lett. 29, 2846-2848 (2004).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
[CrossRef]

N. R. Newbury, B. R. Washburn, and K. L. Corwin, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[CrossRef] [PubMed]

F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg, "Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber," Opt. Lett. 24, 1428-1430 (1999).
[CrossRef]

Phys. Rev. Lett.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Other

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2000).

R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for flatly broadened SC generation: SMF, single-mode fiber; EDF, Er-doped fiber; WDM, wavelength-division-multiplexing coupler; PC, polarization controller; ND-HNLF, normal dispersive highly nonlinear fiber.

Fig. 2
Fig. 2

(a) Temporal and (b) spectral waveforms of high-power Raman soliton pulses. The broken curve in (b) shows the extra pump component that was eliminated by the optical filter.

Fig. 3
Fig. 3

Measured spectra of SC on (a) linear scale and (b) log scale. The spectra of fiber laser oscillator and high-power Raman soliton pulses are also shown in (a).

Fig. 4
Fig. 4

Variation of optical spectra for SC generation. Optical spectra at the propagation length of 0, 10, 50, and 400 cm are shown.

Fig. 5
Fig. 5

Numerically calculated X-FROG trace of generated SC. Inset, optical spectra of numerically simulated SC (broken curve) and experimentally measured SC (solid curve).

Fig. 6
Fig. 6

Measured RIN characteristics of SC generated in this work, fiber laser oscillator, amplified pulses after EDF, Raman soliton pulses, and conventional SC generated using HNL-DSF.

Fig. 7
Fig. 7

Degree of coherence of SC generated in this work (black curve) and conventional SC generated using HNL-DSF (gray curve).

Fig. 8
Fig. 8

Experimental setup for generation of flat SC broadened beyond an octave. Inset, (a) autocorrelation trace and (b) optical spectrum of the high-power Raman soliton pulses.

Fig. 9
Fig. 9

Measured optical spectrum of the over an octave SC. The spectrum is shown on linear and log scales. Broken line shows the spectrum of high-power soliton pulse.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ( ω , τ ) = E ( t ) g ( t τ ) exp ( i ω t ) d t 2 ,
RIN ( f ) = ( Δ P ( f ) 2 P dc 2 Δ f ) .
g 12 ( λ ) = I max ( λ ) I min ( λ ) 4 I 1 ( λ ) I 2 ( λ ) ,
N = γ P 0 T 0 2 β 2 ,

Metrics