Abstract

We review supercontinuum generation in optical fibers for particular cases where the nonlinear spectral broadening is induced by pump radiation from fiber-format sources. Based on numerical simulations, our paper is intended to provide experimental design guidelines tailored ytterbium and erbium-based pumps around 1060 and 1550nm, respectively. In particular, at 1060nm, we consider conditions under which the generated spectra are phase and intensity stable, and we address the dependence of the supercontinuum coherence on the input pulse parameters and the fiber length. At 1550nm, special attention is paid to the case of dispersion-flattened dispersion-decreasing fiber, where we revisit the underlying physics in detail and explicitly examine the use of such fiber for supercontinuum generation with pumps of peak power in the range 2001200W and sub-10m fiber lengths. We show that supercontinuum generation under such conditions can be highly coherent and can be applied to nonlinear pulse compression.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
    [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
    [CrossRef]
  3. R.R.Alfano, ed., The Supercontinuum Laser Source (Springer, 2006).
    [CrossRef]
  4. C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
    [CrossRef]
  5. R. H. Stolen, C. Lee, and R. K. Jain, "Development of the stimulated Raman spectrum in single-mode silica fibers," J. Opt. Soc. Am. B 1, 652-657 (1984).
    [CrossRef]
  6. P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987).
    [CrossRef]
  7. I. Ilev, H. Kumagai, K. Toyoda, and I. Koprinkov, "Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping," Appl. Opt. 35, 2548-2553 (1996).
    [CrossRef] [PubMed]
  8. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
    [CrossRef]
  9. A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett. 13, 770-772 (1988).
    [CrossRef] [PubMed]
  10. J. Schütz, W. Hodel, and H. P. Weber, "Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre," Opt. Commun. 95, 357-365 (1993).
    [CrossRef]
  11. Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE J. Quantum Electron. QE-23, 510-524 (1987).
    [CrossRef]
  12. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Broad bandwidths from frequency-shifting solitons in fibers," Opt. Lett. 14, 370-372 (1989).
    [CrossRef] [PubMed]
  13. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989).
    [CrossRef]
  14. T. Morioka, K. Mori, and M. Saruwatari, "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres," Electron. Lett. 29, 862-864 (1993).
    [CrossRef]
  15. K. Mori, T. Morioka, and M. Saruwatari, "Group-velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical-fiber," Electron. Lett. 29, 987-989 (1993).
    [CrossRef]
  16. H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, "100Gbit/s optical wave-form measurement with 0.6ps resolution optical-sampling using subpicosecond supercontinuum pulses," Electron. Lett. 30, 1152-1153 (1994).
    [CrossRef]
  17. K. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, "Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation," Electron. Lett. 30, 1960-1962 (1994).
    [CrossRef]
  18. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum," Electron. Lett. 30, 1166-1168 (1994).
    [CrossRef]
  19. T. Morioka, K. Mori, S. Kawanisho, and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photon. Technol. Lett. 6, 365-368 (1994).
    [CrossRef]
  20. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Nearly penalty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm," Electron. Lett. 30, 790-791 (1994).
    [CrossRef]
  21. T. Morioka, S. Kawanishi, H. Takara, and O. Kamatani, "Penalty-free, 100Gbit/s optical transmission of <2ps supercontinuum transform-limited pulses over 40km," Electron. Lett. 31, 124-125 (1995).
    [CrossRef]
  22. T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, "Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering," Electron. Lett. 31, 1064-1066 (1995).
    [CrossRef]
  23. K. Mori, T. Morioka, and M. Saruwatari, "Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical-fiber pumped by a 1.5μm compact laser source," IEEE Trans. Instrum. Meas. 44, 712-715 (1995).
    [CrossRef]
  24. S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, "200Gbit/s, 100km time-division-multiplexed optical-transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electron. Lett. 31, 816-817 (1995).
    [CrossRef]
  25. Y. Takushima, F. Futami, and K. Kikuchi, "Generation of over 140nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source," IEEE Photon. Technol. Lett. 10, 1560-1562 (1998).
    [CrossRef]
  26. T. Okuno, M. Onishi, and M. Nishimura, "Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber," IEEE Photon. Technol. Lett. 10, 72-74 (1998).
    [CrossRef]
  27. M. Nakazawa, K. R. Tamura, H. Kubota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
    [CrossRef]
  28. B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999).
    [CrossRef]
  29. H. Kubota, K. R. Tamura, and M. Nakazawa, "Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction," J. Opt. Soc. Am. B 16, 2223-2232 (1999).
    [CrossRef]
  30. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
    [CrossRef]
  31. K. R. Tamura, H. Kubota, and M. Nakazawa, "Fundamentals of stable continuum generation at high repetition rates," IEEE J. Quantum Electron. 36, 773-779 (2000).
    [CrossRef]
  32. K. Mori, H. Takara, and S. Kawanishi, "Analysis and design of supercontinuum pulse generation in a single-mode optical fiber," J. Opt. Soc. Am. B 18, 1780-1792 (2001).
    [CrossRef]
  33. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  34. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
    [CrossRef] [PubMed]
  35. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  36. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
    [CrossRef]
  37. J. W. Lou, T. J. Xia, O. Boyraz, C.-X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter supercontinuum spectra in dispersion tailored fibers," in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuH6, pp. 32-34.
  38. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, andT. Morioka, "Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile," Electron. Lett. 33, 1806-1808 (1997).
    [CrossRef]
  39. To avoid any ambiguity, we note explicitly that "decreasing anomalous GVD" corresponds to a variation from anomalous toward normal dispersion values.
  40. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, "Gigahertz-repetition rate mode-locked fiber laser for continuum generation," Opt. Lett. 25, 1418-1420 (2000).
    [CrossRef]
  41. G. A. Nowak, J. Kim, and M. N. Islam, "Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber," Appl. Opt. 38, 7364-7369 (1999).
    [CrossRef]
  42. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
    [CrossRef]
  43. J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, "Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped ytterbium fiber source," Opt. Express 10, 382-387 (2002).
    [PubMed]
  44. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06-1.33μm based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286-1294 (2002).
    [CrossRef]
  45. H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
    [CrossRef]
  46. H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1μm," Opt. Lett. 30, 1171-1173 (2005).
    [CrossRef] [PubMed]
  47. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
    [CrossRef] [PubMed]
  48. M. Rusu, A. B. Grudinin, and O. G. Okhotnikov, "Slicing the supercontinuum radiation generated in photonic crystal fiber using an all-fiber chirped pulse amplification system," Opt. Express 13, 6390-6400 (2005).
    [CrossRef] [PubMed]
  49. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005).
    [CrossRef] [PubMed]
  50. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
    [CrossRef] [PubMed]
  51. T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
    [CrossRef]
  52. N. Nishizawa and T. Goto, "Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001).
    [CrossRef]
  53. N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization-maintaining optical fibers," IEEE J. Sel. Top. Quantum Electron. 7, 518-524 (2001).
    [CrossRef]
  54. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, "All-fiber octave-spanning supercontinuum," Opt. Lett. 28, 643-645 (2003).
    [CrossRef] [PubMed]
  55. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
    [CrossRef]
  56. J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, "High power, single mode, all-fiber source of femtosecond pulses at 1550nm and its use in supercontinuum generation," Opt. Express 12, 3025-3034 (2004).
    [CrossRef] [PubMed]
  57. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
    [CrossRef] [PubMed]
  58. J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, andT. Goto, "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
    [CrossRef]
  59. J. W. Nicholson and M. F. Yan, "Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550nm," Opt. Express 12, 679-688 (2004).
    [CrossRef] [PubMed]
  60. B. R. Washburn, S. A. Diddams, N. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004).
    [CrossRef] [PubMed]
  61. B. R. Washburn, R. W. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S. Westbrook, and C. G. Jorgensen, "Fiber-laser-based frequency comb with a tunable repetition rate," Opt. Express 12, 4999-5004 (2004).
    [CrossRef] [PubMed]
  62. B. R. Washburn, W. C. Swann, and N. R. Newbury, "Response dynamics of the frequency comb output from a femtosecond fiber laser," Opt. Express 13, 10622-10633 (2005).
    [CrossRef] [PubMed]
  63. W. C. McFerran, J. J. Swann, B. R. Washburn, and N. R. Newbury, "Elimination of pump-induced frequency jitter on fiber-laser frequency combs," Opt. Lett. 31, 1997-1999 (2006).
    [CrossRef] [PubMed]
  64. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5μm," Opt. Lett. 29, 2846-2848 (2004).
    [CrossRef]
  65. Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, "A 36-channel ×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber," IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
    [CrossRef]
  66. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, "Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber," Opt. Express 11, 1537-1540 (2003).
    [CrossRef] [PubMed]
  67. H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Supercontinuum generation with 200pJ laser pulses in an extruded SF6 fiber at 1560nm," Opt. Express 11, 3196-3201 (2003).
    [CrossRef] [PubMed]
  68. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
    [CrossRef] [PubMed]
  69. M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
    [CrossRef]
  70. M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
    [CrossRef]
  71. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
    [CrossRef] [PubMed]
  72. A. K. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005).
    [CrossRef] [PubMed]
  73. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004).
    [CrossRef] [PubMed]
  74. F. Vanholsbeeck, S. Martín-López, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
    [CrossRef] [PubMed]
  75. S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
    [CrossRef] [PubMed]
  76. P.-L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "Optical coherence tomography using a continuous wave, high-power, raman continuum light source," Opt. Express 12, 5287-5295 (2004).
    [CrossRef] [PubMed]
  77. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, "Supercontinuum self-Q-switched ytterbium fiber laser," Opt. Lett. 22, 298-300 (1997).
    [CrossRef] [PubMed]
  78. M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
    [CrossRef]
  79. J. H. Lee, Y. Takushima, and K. Kikuchi, "Continuous-wave super continuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber," Opt. Lett. 30, 2599-2601 (2005).
    [CrossRef] [PubMed]
  80. J. H. Lee and K. Kikuchi, "Experimental performance characterization for various continuous-wave supercontinuum schemes: ring cavity and single pass structures," Opt. Express 13, 4848-4853 (2005).
    [CrossRef] [PubMed]
  81. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  82. J. M. Dudley and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
    [CrossRef]
  83. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002).
    [PubMed]
  84. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  85. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
    [CrossRef]
  86. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
    [CrossRef] [PubMed]
  87. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 11, 464-466 (1986).
    [CrossRef] [PubMed]
  88. E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
    [CrossRef]
  89. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  90. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  91. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30fs pulses," Opt. Express 12, 4614-4624 (2004).
    [CrossRef] [PubMed]
  92. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].
  93. J. H. Lee, Y.-G. Han, and S. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006).
    [CrossRef] [PubMed]
  94. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
    [CrossRef] [PubMed]
  95. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  96. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003).
    [CrossRef]
  97. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, "Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers," J. Opt. Soc. Am. B 8, 1626-1632 (1991).
    [CrossRef]
  98. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904/1-4 (2003).
    [CrossRef]
  99. J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
    [CrossRef]
  100. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Phys. Lett. 11, 2489-2494 (1972).
  101. A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  102. K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Initial steps of supercontinuum generation in photonic crystal fibers," J. Opt. Soc. Am. B 20, 1887-1893 (2003).
    [CrossRef]
  103. P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005).
    [CrossRef] [PubMed]
  104. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, "Dispersive wave blue-shift in supercontinuum generation," Opt. Express 14, 11997-12007 (2006).
    [CrossRef] [PubMed]
  105. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 3011705-1708 (2003).
    [CrossRef] [PubMed]
  106. F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615/1-9 (2004).
    [CrossRef]
  107. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005).
    [CrossRef] [PubMed]
  108. M. Monerie, "Propagation in doubly-clad single mode fiers," IEEE J. Quantum Electron. 18, 535-542 (1983).
    [CrossRef]
  109. P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
    [CrossRef] [PubMed]
  110. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
    [CrossRef]
  111. H. H. Kuehl, "Solitons on an axially nonuniform optical fiber," J. Opt. Soc. Am. B 5, 709-713 (1988).
    [CrossRef]
  112. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, "Soliton pulse compression in dispersion-decreasing fiber," Opt. Lett. 18, 476-478 (1993).
    [CrossRef] [PubMed]
  113. M. D. Pelusi and H. F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997).
    [CrossRef]
  114. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004).
    [CrossRef] [PubMed]
  115. E. B. Treacy, "Measurement and interpretation of dynamic spectrograms of picosecond light pulses," J. Appl. Phys. 42, 3848-3858 (1971).
    [CrossRef]
  116. G. Chang, T. B. Norris, and H. G. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression," Opt. Lett. 28, 546-548 (2003).
    [CrossRef] [PubMed]
  117. J. M. Dudley and S. Coen, "Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express 12, 2423-2428 (2004).
    [CrossRef] [PubMed]
  118. K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express 12, 2027-2032 (2004).
    [CrossRef] [PubMed]
  119. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. R. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
    [CrossRef] [PubMed]
  120. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J., H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006).
    [CrossRef] [PubMed]
  121. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. T. F., and E. J. Friebele, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006).
    [CrossRef] [PubMed]
  122. S. V. Chernikov, J. R. Taylor, and R. Kashyap, "Comb-like dispersion profiled fiber for soliton pulse train generation," Opt. Lett. 19, 539-541 (1994).
    [CrossRef] [PubMed]
  123. B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
    [CrossRef]
  124. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
    [CrossRef]

2006 (9)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
[CrossRef]

J. H. Lee, Y.-G. Han, and S. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006).
[CrossRef] [PubMed]

J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. T. F., and E. J. Friebele, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006).
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J., H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006).
[CrossRef] [PubMed]

W. C. McFerran, J. J. Swann, B. R. Washburn, and N. R. Newbury, "Elimination of pump-induced frequency jitter on fiber-laser frequency combs," Opt. Lett. 31, 1997-1999 (2006).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
[CrossRef] [PubMed]

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, "Dispersive wave blue-shift in supercontinuum generation," Opt. Express 14, 11997-12007 (2006).
[CrossRef] [PubMed]

2005 (16)

A. K. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005).
[CrossRef] [PubMed]

A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
[CrossRef] [PubMed]

H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1μm," Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

J. H. Lee and K. Kikuchi, "Experimental performance characterization for various continuous-wave supercontinuum schemes: ring cavity and single pass structures," Opt. Express 13, 4848-4853 (2005).
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005).
[CrossRef] [PubMed]

M. Rusu, A. B. Grudinin, and O. G. Okhotnikov, "Slicing the supercontinuum radiation generated in photonic crystal fiber using an all-fiber chirped pulse amplification system," Opt. Express 13, 6390-6400 (2005).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Martín-López, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005).
[CrossRef] [PubMed]

J. H. Lee, Y. Takushima, and K. Kikuchi, "Continuous-wave super continuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber," Opt. Lett. 30, 2599-2601 (2005).
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005).
[CrossRef] [PubMed]

B. R. Washburn, W. C. Swann, and N. R. Newbury, "Response dynamics of the frequency comb output from a femtosecond fiber laser," Opt. Express 13, 10622-10633 (2005).
[CrossRef] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, andT. Goto, "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

2004 (17)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615/1-9 (2004).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004).
[CrossRef] [PubMed]

J. W. Nicholson and M. F. Yan, "Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550nm," Opt. Express 12, 679-688 (2004).
[CrossRef] [PubMed]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. R. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express 12, 2027-2032 (2004).
[CrossRef] [PubMed]

J. M. Dudley and S. Coen, "Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express 12, 2423-2428 (2004).
[CrossRef] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004).
[CrossRef] [PubMed]

J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, "High power, single mode, all-fiber source of femtosecond pulses at 1550nm and its use in supercontinuum generation," Opt. Express 12, 3025-3034 (2004).
[CrossRef] [PubMed]

A. K. Abeeluck, C. Headley, and C. G. Jørgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30fs pulses," Opt. Express 12, 4614-4624 (2004).
[CrossRef] [PubMed]

B. R. Washburn, R. W. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S. Westbrook, and C. G. Jorgensen, "Fiber-laser-based frequency comb with a tunable repetition rate," Opt. Express 12, 4999-5004 (2004).
[CrossRef] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004).
[CrossRef] [PubMed]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

P.-L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "Optical coherence tomography using a continuous wave, high-power, raman continuum light source," Opt. Express 12, 5287-5295 (2004).
[CrossRef] [PubMed]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5μm," Opt. Lett. 29, 2846-2848 (2004).
[CrossRef]

2003 (16)

G. Chang, T. B. Norris, and H. G. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression," Opt. Lett. 28, 546-548 (2003).
[CrossRef] [PubMed]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, "All-fiber octave-spanning supercontinuum," Opt. Lett. 28, 643-645 (2003).
[CrossRef] [PubMed]

T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, "Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber," Opt. Express 11, 1537-1540 (2003).
[CrossRef] [PubMed]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Initial steps of supercontinuum generation in photonic crystal fibers," J. Opt. Soc. Am. B 20, 1887-1893 (2003).
[CrossRef]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003).
[CrossRef]

H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Supercontinuum generation with 200pJ laser pulses in an extruded SF6 fiber at 1560nm," Opt. Express 11, 3196-3201 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904/1-4 (2003).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 3011705-1708 (2003).
[CrossRef] [PubMed]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, "A 36-channel ×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber," IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
[CrossRef]

M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

2002 (7)

J. M. Dudley and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, "Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped ytterbium fiber source," Opt. Express 10, 382-387 (2002).
[PubMed]

A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
[CrossRef]

J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06-1.33μm based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286-1294 (2002).
[CrossRef]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002).
[PubMed]

2001 (3)

K. Mori, H. Takara, and S. Kawanishi, "Analysis and design of supercontinuum pulse generation in a single-mode optical fiber," J. Opt. Soc. Am. B 18, 1780-1792 (2001).
[CrossRef]

N. Nishizawa and T. Goto, "Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001).
[CrossRef]

N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization-maintaining optical fibers," IEEE J. Sel. Top. Quantum Electron. 7, 518-524 (2001).
[CrossRef]

2000 (4)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

K. R. Tamura, H. Kubota, and M. Nakazawa, "Fundamentals of stable continuum generation at high repetition rates," IEEE J. Quantum Electron. 36, 773-779 (2000).
[CrossRef]

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, "Gigahertz-repetition rate mode-locked fiber laser for continuum generation," Opt. Lett. 25, 1418-1420 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

1999 (4)

G. A. Nowak, J. Kim, and M. N. Islam, "Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber," Appl. Opt. 38, 7364-7369 (1999).
[CrossRef]

H. Kubota, K. R. Tamura, and M. Nakazawa, "Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction," J. Opt. Soc. Am. B 16, 2223-2232 (1999).
[CrossRef]

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999).
[CrossRef]

1998 (3)

Y. Takushima, F. Futami, and K. Kikuchi, "Generation of over 140nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source," IEEE Photon. Technol. Lett. 10, 1560-1562 (1998).
[CrossRef]

T. Okuno, M. Onishi, and M. Nishimura, "Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber," IEEE Photon. Technol. Lett. 10, 72-74 (1998).
[CrossRef]

M. Nakazawa, K. R. Tamura, H. Kubota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

1997 (3)

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, andT. Morioka, "Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile," Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, "Supercontinuum self-Q-switched ytterbium fiber laser," Opt. Lett. 22, 298-300 (1997).
[CrossRef] [PubMed]

M. D. Pelusi and H. F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997).
[CrossRef]

1996 (2)

I. Ilev, H. Kumagai, K. Toyoda, and I. Koprinkov, "Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping," Appl. Opt. 35, 2548-2553 (1996).
[CrossRef] [PubMed]

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

1995 (5)

T. Morioka, S. Kawanishi, H. Takara, and O. Kamatani, "Penalty-free, 100Gbit/s optical transmission of <2ps supercontinuum transform-limited pulses over 40km," Electron. Lett. 31, 124-125 (1995).
[CrossRef]

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, "Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering," Electron. Lett. 31, 1064-1066 (1995).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, "Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical-fiber pumped by a 1.5μm compact laser source," IEEE Trans. Instrum. Meas. 44, 712-715 (1995).
[CrossRef]

S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, "200Gbit/s, 100km time-division-multiplexed optical-transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electron. Lett. 31, 816-817 (1995).
[CrossRef]

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

1994 (6)

S. V. Chernikov, J. R. Taylor, and R. Kashyap, "Comb-like dispersion profiled fiber for soliton pulse train generation," Opt. Lett. 19, 539-541 (1994).
[CrossRef] [PubMed]

H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, "100Gbit/s optical wave-form measurement with 0.6ps resolution optical-sampling using subpicosecond supercontinuum pulses," Electron. Lett. 30, 1152-1153 (1994).
[CrossRef]

K. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, "Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation," Electron. Lett. 30, 1960-1962 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum," Electron. Lett. 30, 1166-1168 (1994).
[CrossRef]

T. Morioka, K. Mori, S. Kawanisho, and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photon. Technol. Lett. 6, 365-368 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Nearly penalty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm," Electron. Lett. 30, 790-791 (1994).
[CrossRef]

1993 (5)

T. Morioka, K. Mori, and M. Saruwatari, "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres," Electron. Lett. 29, 862-864 (1993).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, "Group-velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical-fiber," Electron. Lett. 29, 987-989 (1993).
[CrossRef]

J. Schütz, W. Hodel, and H. P. Weber, "Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre," Opt. Commun. 95, 357-365 (1993).
[CrossRef]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, "Soliton pulse compression in dispersion-decreasing fiber," Opt. Lett. 18, 476-478 (1993).
[CrossRef] [PubMed]

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
[CrossRef] [PubMed]

1991 (1)

1989 (3)

1988 (2)

1987 (3)

Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE J. Quantum Electron. QE-23, 510-524 (1987).
[CrossRef]

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

1986 (3)

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 11, 464-466 (1986).
[CrossRef] [PubMed]

J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
[CrossRef] [PubMed]

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

1985 (1)

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

1984 (1)

1983 (1)

M. Monerie, "Propagation in doubly-clad single mode fiers," IEEE J. Quantum Electron. 18, 535-542 (1983).
[CrossRef]

1976 (1)

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

1972 (1)

R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Phys. Lett. 11, 2489-2494 (1972).

1971 (1)

E. B. Treacy, "Measurement and interpretation of dynamic spectrograms of picosecond light pulses," J. Appl. Phys. 42, 3848-3858 (1971).
[CrossRef]

1970 (2)

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Abeeluck, A. K.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Akhmediev, N.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Alfano, R. R.

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

Andersen, T. V.

Arend, M.

B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999).
[CrossRef]

Austin, D. R.

Avdokhin, A. V.

Baldeck, P. L.

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987).
[CrossRef]

Bang, O.

Bar-Joseph, I.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

Belardi, W.

Bergman, K.

B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999).
[CrossRef]

Biancalana, F.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615/1-9 (2004).
[CrossRef]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Billet, C.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
[CrossRef]

Bjarklev, A.

Blow, K. J.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Boyraz, O.

J. W. Lou, T. J. Xia, O. Boyraz, C.-X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter supercontinuum spectra in dispersion tailored fibers," in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuH6, pp. 32-34.

Broderick, N. G. R.

Broeng, J.

Brown, T. G.

Buckley, J.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Carruthers, T. F.

Chang, G.

Chau, A. H. L.

Chemla, D. S.

Chen, H. H.

Chen, Y.

Chen, Z.

Chernikov, S. V.

Chong, A.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

F. Vanholsbeeck, S. Martín-López, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

J. M. Dudley and S. Coen, "Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express 12, 2423-2428 (2004).
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904/1-4 (2003).
[CrossRef]

J. M. Dudley and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
[CrossRef]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

Collings, B. C.

B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999).
[CrossRef]

Corredera, P.

M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904/1-4 (2003).
[CrossRef]

de Matos, C. J. S.

de Sterke, C. M.

Dianov, E. M.

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, "Soliton pulse compression in dispersion-decreasing fiber," Opt. Lett. 18, 476-478 (1993).
[CrossRef] [PubMed]

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
[CrossRef] [PubMed]

E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, "Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers," J. Opt. Soc. Am. B 8, 1626-1632 (1991).
[CrossRef]

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

Diddams, S. A.

B. R. Washburn, S. A. Diddams, N. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904/1-4 (2003).
[CrossRef]

DiMarcello, F.

Ding, L.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

J. M. Dudley and S. Coen, "Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express 12, 2423-2428 (2004).
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904/1-4 (2003).
[CrossRef]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

J. M. Dudley and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
[CrossRef]

Efimov, A.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Eggleton, B. J.

F., T. T.

Faldon, M. E.

Falk, P.

Fallnich, C.

Feder, K.

Feder, K. S.

Feng, M.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Ferriere, R.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
[CrossRef]

Finot, C.

Fleming, J.

Fomichev, A. A.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

Fox, R. W.

Friebele, E. J.

Frosz, M. H.

Fujimoto, J. G.

Furusawa, K.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, "A 36-channel ×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber," IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06-1.33μm based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286-1294 (2002).
[CrossRef]

Futami, F.

Y. Takushima, F. Futami, and K. Kikuchi, "Generation of over 140nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source," IEEE Photon. Technol. Lett. 10, 1560-1562 (1998).
[CrossRef]

Gaeta, A. L.

Gapontsev, V. P.

Genty, G.

George, A. K.

Golovchenko, E. A.

González-Herráez, M.

F. Vanholsbeeck, S. Martín-López, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

Gordon, J. P.

Goto, T.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, andT. Goto, "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization-maintaining optical fibers," IEEE J. Sel. Top. Quantum Electron. 7, 518-524 (2001).
[CrossRef]

N. Nishizawa and T. Goto, "Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001).
[CrossRef]

Gouveia-Neto, A. S.

Grudinin, A. B.

Gu, X.

Han, Y.-G.

Hansen, K. P.

Harvey, J. D.

Hasegawa, A.

Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE J. Quantum Electron. QE-23, 510-524 (1987).
[CrossRef]

Haus, H. A.

Hayes, J. R.

Headley, C.

Hernanz, M. L.

M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

Hilligsøe, K. M.

Hirose, S.

M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
[CrossRef]

Hodel, W.

J. Schütz, W. Hodel, and H. P. Weber, "Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre," Opt. Commun. 95, 357-365 (1993).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

Horak, P.

Horche, P. R.

M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

Hori, T.

Hsiung, P.

Hsiung, P.-L.

Hu, J.

Huang, Y.-C.

Hundertmark, H.

Ilev, I.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Ippen, E. P.

Ishikawa, S.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

Islam, M. N.

Jain, R. K.

Jiang, Y.

Joly, N. Y.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

Jorgensen, C. G.

Jørgensen, C.

Jørgensen, C. G.

Kaivola, M.

Kamatani, O.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and O. Kamatani, "Penalty-free, 100Gbit/s optical transmission of <2ps supercontinuum transform-limited pulses over 40km," Electron. Lett. 31, 124-125 (1995).
[CrossRef]

S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, "200Gbit/s, 100km time-division-multiplexed optical-transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electron. Lett. 31, 816-817 (1995).
[CrossRef]

Kanamori, T.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

Karasik, A. Ya.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

Karlsson, M.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Kashiwada, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

Kashyap, R.

Kawanishi, S.

T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, "Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber," Opt. Express 11, 1537-1540 (2003).
[CrossRef] [PubMed]

K. Mori, H. Takara, and S. Kawanishi, "Analysis and design of supercontinuum pulse generation in a single-mode optical fiber," J. Opt. Soc. Am. B 18, 1780-1792 (2001).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, andT. Morioka, "Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile," Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and O. Kamatani, "Penalty-free, 100Gbit/s optical transmission of <2ps supercontinuum transform-limited pulses over 40km," Electron. Lett. 31, 124-125 (1995).
[CrossRef]

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, "Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering," Electron. Lett. 31, 1064-1066 (1995).
[CrossRef]

S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, "200Gbit/s, 100km time-division-multiplexed optical-transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electron. Lett. 31, 816-817 (1995).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum," Electron. Lett. 30, 1166-1168 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Nearly penalty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm," Electron. Lett. 30, 790-791 (1994).
[CrossRef]

H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, "100Gbit/s optical wave-form measurement with 0.6ps resolution optical-sampling using subpicosecond supercontinuum pulses," Electron. Lett. 30, 1152-1153 (1994).
[CrossRef]

K. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, "Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation," Electron. Lett. 30, 1960-1962 (1994).
[CrossRef]

Kawanisho, S.

T. Morioka, K. Mori, S. Kawanisho, and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photon. Technol. Lett. 6, 365-368 (1994).
[CrossRef]

Keiding, S. R.

Kibler, B.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

Kikuchi, K.

Kim, J.

Kimmel, M.

Knight, J. C.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 3011705-1708 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Supercontinuum generation with 200pJ laser pulses in an extruded SF6 fiber at 1560nm," Opt. Express 11, 3196-3201 (2003).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

Ko, T. H.

Kobtsev, S. M.

Kodama, Y.

Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE J. Quantum Electron. QE-23, 510-524 (1987).
[CrossRef]

Koprinkov, I.

Koshiba, M.

Kracht, D.

Kristiansen, R.

Kubota, H.

Kudlinski, A.

Kuehl, H. H.

Kumagai, H.

Kumar, V. V. R. K.

Lacourt, P.-A.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
[CrossRef]

Lantz, E.

Larger, L.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
[CrossRef]

Larsen, J. J.

Lee, C.

Lee, J. H.

Lee, S.

Lee, Y. C.

Lefort, L.

Lehtonen, M.

Leng, L.

B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999).
[CrossRef]

Leonhardt, R.

Li, J.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Li, J. F.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Li, Y. G.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Lim, H.

H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1μm," Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Limpert, J.

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Lin, C.

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

Liu, H. F.

M. D. Pelusi and H. F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997).
[CrossRef]

Lou, J. W.

J. W. Lou, T. J. Xia, O. Boyraz, C.-X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter supercontinuum spectra in dispersion tailored fibers," in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuH6, pp. 32-34.

Lu, J.

M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
[CrossRef]

Lu, K. C.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 3011705-1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Maillotte, H.

Malinowski, A.

Mamyshev, P. V.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
[CrossRef] [PubMed]

E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, "Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers," J. Opt. Soc. Am. B 8, 1626-1632 (1991).
[CrossRef]

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

Marks, B. S.

Martín-López, S.

F. Vanholsbeeck, S. Martín-López, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

McFerran, W. C.

Menyuk, C. R.

Mikulla, B.

B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999).
[CrossRef]

Miroshnichenko, S. I.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
[CrossRef] [PubMed]

Mølmer, K.

Monberg, E.

Monerie, M.

M. Monerie, "Propagation in doubly-clad single mode fiers," IEEE J. Quantum Electron. 18, 535-542 (1983).
[CrossRef]

Monro, T. M.

Mori, K.

K. Mori, H. Takara, and S. Kawanishi, "Analysis and design of supercontinuum pulse generation in a single-mode optical fiber," J. Opt. Soc. Am. B 18, 1780-1792 (2001).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, andT. Morioka, "Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile," Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, "Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical-fiber pumped by a 1.5μm compact laser source," IEEE Trans. Instrum. Meas. 44, 712-715 (1995).
[CrossRef]

K. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, "Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation," Electron. Lett. 30, 1960-1962 (1994).
[CrossRef]

H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, "100Gbit/s optical wave-form measurement with 0.6ps resolution optical-sampling using subpicosecond supercontinuum pulses," Electron. Lett. 30, 1152-1153 (1994).
[CrossRef]

T. Morioka, K. Mori, S. Kawanisho, and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photon. Technol. Lett. 6, 365-368 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Nearly penalty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm," Electron. Lett. 30, 790-791 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum," Electron. Lett. 30, 1166-1168 (1994).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, "Group-velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical-fiber," Electron. Lett. 29, 987-989 (1993).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres," Electron. Lett. 29, 862-864 (1993).
[CrossRef]

Morioka, K.

K. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, "Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation," Electron. Lett. 30, 1960-1962 (1994).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, andT. Morioka, "Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile," Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, "Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical-fiber pumped by a 1.5μm compact laser source," IEEE Trans. Instrum. Meas. 44, 712-715 (1995).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and O. Kamatani, "Penalty-free, 100Gbit/s optical transmission of <2ps supercontinuum transform-limited pulses over 40km," Electron. Lett. 31, 124-125 (1995).
[CrossRef]

S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, "200Gbit/s, 100km time-division-multiplexed optical-transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electron. Lett. 31, 816-817 (1995).
[CrossRef]

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, "Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering," Electron. Lett. 31, 1064-1066 (1995).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum," Electron. Lett. 30, 1166-1168 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Nearly penalty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm," Electron. Lett. 30, 790-791 (1994).
[CrossRef]

H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, "100Gbit/s optical wave-form measurement with 0.6ps resolution optical-sampling using subpicosecond supercontinuum pulses," Electron. Lett. 30, 1152-1153 (1994).
[CrossRef]

T. Morioka, K. Mori, S. Kawanisho, and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photon. Technol. Lett. 6, 365-368 (1994).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, "Group-velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical-fiber," Electron. Lett. 29, 987-989 (1993).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres," Electron. Lett. 29, 862-864 (1993).
[CrossRef]

Musha, M.

M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
[CrossRef]

Mussot, A.

Nagai, H.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, andT. Goto, "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

Nakazawa, M.

K. R. Tamura, H. Kubota, and M. Nakazawa, "Fundamentals of stable continuum generation at high repetition rates," IEEE J. Quantum Electron. 36, 773-779 (2000).
[CrossRef]

H. Kubota, K. R. Tamura, and M. Nakazawa, "Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction," J. Opt. Soc. Am. B 16, 2223-2232 (1999).
[CrossRef]

M. Nakazawa, K. R. Tamura, H. Kubota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Newbury, N.

Newbury, N. R.

Nicholson, J. W.

Nielsen, C. K.

Nikolov, N. I.

Nikonova, Z. S.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

Nishimura, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

T. Okuno, M. Onishi, and M. Nishimura, "Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber," IEEE Photon. Technol. Lett. 10, 72-74 (1998).
[CrossRef]

Nishizawa, N.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, andT. Goto, "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5μm," Opt. Lett. 29, 2846-2848 (2004).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization-maintaining optical fibers," IEEE J. Sel. Top. Quantum Electron. 7, 518-524 (2001).
[CrossRef]

N. Nishizawa and T. Goto, "Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001).
[CrossRef]

Norris, T. B.

Nowak, G. A.

G. A. Nowak, J. Kim, and M. N. Islam, "Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber," Appl. Opt. 38, 7364-7369 (1999).
[CrossRef]

J. W. Lou, T. J. Xia, O. Boyraz, C.-X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter supercontinuum spectra in dispersion tailored fibers," in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuH6, pp. 32-34.

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Okhotnikov, O. G.

Okuno, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

T. Okuno, M. Onishi, and M. Nishimura, "Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber," IEEE Photon. Technol. Lett. 10, 72-74 (1998).
[CrossRef]

Omenetto, F. G.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Onishi, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

T. Okuno, M. Onishi, and M. Nishimura, "Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber," IEEE Photon. Technol. Lett. 10, 72-74 (1998).
[CrossRef]

Ono, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

Paulsen, H. N.

Payne, D. N.

Pelusi, M. D.

M. D. Pelusi and H. F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997).
[CrossRef]

Petropoulos, P.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, "A 36-channel ×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber," IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

Pilipetskii, A. N.

Piper, A.

Pitois, S.

Poletti, F.

Popov, S. V.

Prabhu, M.

M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
[CrossRef]

Price, J. H. V.

Prokhorov, A. M.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

Ranka, J. K.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Richardson, D. J.

Rulkov, A. B.

Russell, P. St. J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004).
[CrossRef] [PubMed]

H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Supercontinuum generation with 200pJ laser pulses in an extruded SF6 fiber at 1560nm," Opt. Express 11, 3196-3201 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 3011705-1708 (2003).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

Rusu, M.

Saitoh, K.

Saruwatari, M.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, andT. Morioka, "Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile," Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, "Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical-fiber pumped by a 1.5μm compact laser source," IEEE Trans. Instrum. Meas. 44, 712-715 (1995).
[CrossRef]

S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, "200Gbit/s, 100km time-division-multiplexed optical-transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electron. Lett. 31, 816-817 (1995).
[CrossRef]

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, "Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering," Electron. Lett. 31, 1064-1066 (1995).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Nearly penalty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm," Electron. Lett. 30, 790-791 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum," Electron. Lett. 30, 1166-1168 (1994).
[CrossRef]

H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, "100Gbit/s optical wave-form measurement with 0.6ps resolution optical-sampling using subpicosecond supercontinuum pulses," Electron. Lett. 30, 1152-1153 (1994).
[CrossRef]

T. Morioka, K. Mori, S. Kawanisho, and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photon. Technol. Lett. 6, 365-368 (1994).
[CrossRef]

K. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, "Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation," Electron. Lett. 30, 1960-1962 (1994).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres," Electron. Lett. 29, 862-864 (1993).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, "Group-velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical-fiber," Electron. Lett. 29, 987-989 (1993).
[CrossRef]

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Schreiber, T.

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Schütz, J.

J. Schütz, W. Hodel, and H. P. Weber, "Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre," Opt. Commun. 95, 357-365 (1993).
[CrossRef]

Sears, S.

B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999).
[CrossRef]

Semenov, V. A.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
[CrossRef] [PubMed]

Serkin, V. N.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Shi, C.-X.

J. W. Lou, T. J. Xia, O. Boyraz, C.-X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter supercontinuum spectra in dispersion tailored fibers," in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuH6, pp. 32-34.

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Shirakawa, A.

M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
[CrossRef]

Shreenath, A. P.

Skryabin, D. V.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615/1-9 (2004).
[CrossRef]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 3011705-1708 (2003).
[CrossRef] [PubMed]

Smirnov, S. V.

Smith, R. G.

R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Phys. Lett. 11, 2489-2494 (1972).

Sørensen, T.

Stegeman, G. I.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
[CrossRef] [PubMed]

Stel'makh, M. F.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

Stentz, A. J.

Stolen, R. H.

R. H. Stolen, C. Lee, and R. K. Jain, "Development of the stimulated Raman spectrum in single-mode silica fibers," J. Opt. Soc. Am. B 1, 652-657 (1984).
[CrossRef]

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

Sucha, G.

Suzuki, S.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, "Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering," Electron. Lett. 31, 1064-1066 (1995).
[CrossRef]

Swann, J. J.

Swann, W. C.

Sylvestre, T.

Sysoliatin, A.

Takahashi, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

Takara, H.

K. Mori, H. Takara, and S. Kawanishi, "Analysis and design of supercontinuum pulse generation in a single-mode optical fiber," J. Opt. Soc. Am. B 18, 1780-1792 (2001).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, andT. Morioka, "Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile," Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and O. Kamatani, "Penalty-free, 100Gbit/s optical transmission of <2ps supercontinuum transform-limited pulses over 40km," Electron. Lett. 31, 124-125 (1995).
[CrossRef]

S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, "200Gbit/s, 100km time-division-multiplexed optical-transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electron. Lett. 31, 816-817 (1995).
[CrossRef]

H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, "100Gbit/s optical wave-form measurement with 0.6ps resolution optical-sampling using subpicosecond supercontinuum pulses," Electron. Lett. 30, 1152-1153 (1994).
[CrossRef]

Takayanagi, J.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, andT. Goto, "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
[CrossRef] [PubMed]

Takiguchi, K.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

Takushima, Y.

J. H. Lee, Y. Takushima, and K. Kikuchi, "Continuous-wave super continuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber," Opt. Lett. 30, 2599-2601 (2005).
[CrossRef] [PubMed]

Y. Takushima, F. Futami, and K. Kikuchi, "Generation of over 140nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source," IEEE Photon. Technol. Lett. 10, 1560-1562 (1998).
[CrossRef]

Tamura, K. R.

K. R. Tamura, H. Kubota, and M. Nakazawa, "Fundamentals of stable continuum generation at high repetition rates," IEEE J. Quantum Electron. 36, 773-779 (2000).
[CrossRef]

H. Kubota, K. R. Tamura, and M. Nakazawa, "Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction," J. Opt. Soc. Am. B 16, 2223-2232 (1999).
[CrossRef]

M. Nakazawa, K. R. Tamura, H. Kubota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Tanaka, M.

Taniguchi, A.

M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
[CrossRef]

Taylor, A. J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Taylor, J. R.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005).
[CrossRef] [PubMed]

P.-L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "Optical coherence tomography using a continuous wave, high-power, raman continuum light source," Opt. Express 12, 5287-5295 (2004).
[CrossRef] [PubMed]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, "Supercontinuum self-Q-switched ytterbium fiber laser," Opt. Lett. 22, 298-300 (1997).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, "Comb-like dispersion profiled fiber for soliton pulse train generation," Opt. Lett. 19, 539-541 (1994).
[CrossRef] [PubMed]

A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett. 13, 770-772 (1988).
[CrossRef] [PubMed]

Thøgersen, J.

Toyoda, K.

Travers, J. C.

Treacy, E. B.

E. B. Treacy, "Measurement and interpretation of dynamic spectrograms of picosecond light pulses," J. Appl. Phys. 42, 3848-3858 (1971).
[CrossRef]

Trebino, R.

Tse, M. L. V.

Tünnermann, A.

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Uchiyama, K.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, "Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering," Electron. Lett. 31, 1064-1066 (1995).
[CrossRef]

Ueda, K.

M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
[CrossRef]

Vanholsbeeck, F.

Veng, T.

Vyatkin, M. Y.

Wadsworth, W. J.

Wai, P. K. A.

Wandt, D.

Wang, Y.

Washburn, B. R.

Weber, H. P.

J. Schütz, W. Hodel, and H. P. Weber, "Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre," Opt. Commun. 95, 357-365 (1993).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904/1-4 (2003).
[CrossRef]

Wegener, M.

Westbrook, P. S.

Wigley, P. G. J.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
[CrossRef] [PubMed]

Wilson, J.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
[CrossRef] [PubMed]

Windeler, R. S.

Winful, H. G.

Wise, F. W.

H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1μm," Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Wisk, P.

Wong, W. S.

Wood, D.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Wright, B. M.

Xia, T. J.

J. W. Lou, T. J. Xia, O. Boyraz, C.-X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter supercontinuum spectra in dispersion tailored fibers," in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuH6, pp. 32-34.

Yablon, A.

Yablon, A. D.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Yamada, M.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

Yamaguchi, S.

Yamamoto, T.

Yan, M. F.

Yoshida, E.

M. Nakazawa, K. R. Tamura, H. Kubota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Yoshida, M.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, andT. Goto, "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

Yu, C. X.

Yulin, A. V.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615/1-9 (2004).
[CrossRef]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004).
[CrossRef] [PubMed]

Yusoff, Z.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, "A 36-channel ×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber," IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

Zellmer, H.

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Zhu, Y.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

M. Prabhu, A. Taniguchi, S. Hirose, J. Lu, M. Musha, A. Shirakawa, and K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B 77, 205-210 (2003).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Phys. Lett. 11, 2489-2494 (1972).

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

Electron. Lett. (14)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907 (1996).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, andT. Morioka, "Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile," Electron. Lett. 33, 1806-1808 (1997).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres," Electron. Lett. 29, 862-864 (1993).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, "Group-velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical-fiber," Electron. Lett. 29, 987-989 (1993).
[CrossRef]

H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, "100Gbit/s optical wave-form measurement with 0.6ps resolution optical-sampling using subpicosecond supercontinuum pulses," Electron. Lett. 30, 1152-1153 (1994).
[CrossRef]

K. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, "Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation," Electron. Lett. 30, 1960-1962 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum," Electron. Lett. 30, 1166-1168 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, "Nearly penalty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm," Electron. Lett. 30, 790-791 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and O. Kamatani, "Penalty-free, 100Gbit/s optical transmission of <2ps supercontinuum transform-limited pulses over 40km," Electron. Lett. 31, 124-125 (1995).
[CrossRef]

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, "Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering," Electron. Lett. 31, 1064-1066 (1995).
[CrossRef]

S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, "200Gbit/s, 100km time-division-multiplexed optical-transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electron. Lett. 31, 816-817 (1995).
[CrossRef]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
[CrossRef]

IEEE J. Quantum Electron. (6)

M. Monerie, "Propagation in doubly-clad single mode fiers," IEEE J. Quantum Electron. 18, 535-542 (1983).
[CrossRef]

M. D. Pelusi and H. F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997).
[CrossRef]

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE J. Quantum Electron. QE-23, 510-524 (1987).
[CrossRef]

K. R. Tamura, H. Kubota, and M. Nakazawa, "Fundamentals of stable continuum generation at high repetition rates," IEEE J. Quantum Electron. 36, 773-779 (2000).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization-maintaining optical fibers," IEEE J. Sel. Top. Quantum Electron. 7, 518-524 (2001).
[CrossRef]

J. M. Dudley and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High power supercontinuum generation in a nested linear cavity involving a cw raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, andT. Goto, "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett. 17, 37-39 (2005).
[CrossRef]

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, "A 36-channel ×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber," IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

Y. Takushima, F. Futami, and K. Kikuchi, "Generation of over 140nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source," IEEE Photon. Technol. Lett. 10, 1560-1562 (1998).
[CrossRef]

T. Okuno, M. Onishi, and M. Nishimura, "Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber," IEEE Photon. Technol. Lett. 10, 72-74 (1998).
[CrossRef]

B. Mikulla, L. Leng, S. Sears, B. C. Collings, M. Arend, and K. Bergman, "Broad-band high-repetition-rate source for spectrally sliced WDM," IEEE Photon. Technol. Lett. 11, 418-420 (1999).
[CrossRef]

T. Morioka, K. Mori, S. Kawanisho, and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photon. Technol. Lett. 6, 365-368 (1994).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

K. Mori, T. Morioka, and M. Saruwatari, "Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical-fiber pumped by a 1.5μm compact laser source," IEEE Trans. Instrum. Meas. 44, 712-715 (1995).
[CrossRef]

J. Appl. Phys. (1)

E. B. Treacy, "Measurement and interpretation of dynamic spectrograms of picosecond light pulses," J. Appl. Phys. 42, 3848-3858 (1971).
[CrossRef]

J. Lightwave Technol. (1)

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987).
[CrossRef]

J. Opt. Soc. Am. B (11)

R. H. Stolen, C. Lee, and R. K. Jain, "Development of the stimulated Raman spectrum in single-mode silica fibers," J. Opt. Soc. Am. B 1, 652-657 (1984).
[CrossRef]

H. H. Kuehl, "Solitons on an axially nonuniform optical fiber," J. Opt. Soc. Am. B 5, 709-713 (1988).
[CrossRef]

M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989).
[CrossRef]

E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, "Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers," J. Opt. Soc. Am. B 8, 1626-1632 (1991).
[CrossRef]

H. Kubota, K. R. Tamura, and M. Nakazawa, "Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction," J. Opt. Soc. Am. B 16, 2223-2232 (1999).
[CrossRef]

K. Mori, H. Takara, and S. Kawanishi, "Analysis and design of supercontinuum pulse generation in a single-mode optical fiber," J. Opt. Soc. Am. B 18, 1780-1792 (2001).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey,J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06-1.33μm based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286-1294 (2002).
[CrossRef]

K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Initial steps of supercontinuum generation in photonic crystal fibers," J. Opt. Soc. Am. B 20, 1887-1893 (2003).
[CrossRef]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

N. Nishizawa and T. Goto, "Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser," Jpn. J. Appl. Phys., Part 2 40, L365-L367 (2001).
[CrossRef]

Nature (1)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P., St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Opt. Commun. (3)

J. Schütz, W. Hodel, and H. P. Weber, "Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre," Opt. Commun. 95, 357-365 (1993).
[CrossRef]

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

Opt. Express (29)

P.-L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "Optical coherence tomography using a continuous wave, high-power, raman continuum light source," Opt. Express 12, 5287-5295 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30fs pulses," Opt. Express 12, 4614-4624 (2004).
[CrossRef] [PubMed]

B. R. Washburn, R. W. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S. Westbrook, and C. G. Jorgensen, "Fiber-laser-based frequency comb with a tunable repetition rate," Opt. Express 12, 4999-5004 (2004).
[CrossRef] [PubMed]

A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
[CrossRef] [PubMed]

H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Supercontinuum generation with 200pJ laser pulses in an extruded SF6 fiber at 1560nm," Opt. Express 11, 3196-3201 (2003).
[CrossRef] [PubMed]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004).
[CrossRef] [PubMed]

J. W. Nicholson and M. F. Yan, "Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550nm," Opt. Express 12, 679-688 (2004).
[CrossRef] [PubMed]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. R. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express 12, 2027-2032 (2004).
[CrossRef] [PubMed]

J. M. Dudley and S. Coen, "Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express 12, 2423-2428 (2004).
[CrossRef] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004).
[CrossRef] [PubMed]

J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, "High power, single mode, all-fiber source of femtosecond pulses at 1550nm and its use in supercontinuum generation," Opt. Express 12, 3025-3034 (2004).
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, "Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber," Opt. Express 11, 1537-1540 (2003).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002).
[PubMed]

J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, "Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped ytterbium fiber source," Opt. Express 10, 382-387 (2002).
[PubMed]

J. H. Lee and K. Kikuchi, "Experimental performance characterization for various continuous-wave supercontinuum schemes: ring cavity and single pass structures," Opt. Express 13, 4848-4853 (2005).
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005).
[CrossRef] [PubMed]

M. Rusu, A. B. Grudinin, and O. G. Okhotnikov, "Slicing the supercontinuum radiation generated in photonic crystal fiber using an all-fiber chirped pulse amplification system," Opt. Express 13, 6390-6400 (2005).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Martín-López, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005).
[CrossRef] [PubMed]

B. R. Washburn, W. C. Swann, and N. R. Newbury, "Response dynamics of the frequency comb output from a femtosecond fiber laser," Opt. Express 13, 10622-10633 (2005).
[CrossRef] [PubMed]

J. H. Lee, Y.-G. Han, and S. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006).
[CrossRef] [PubMed]

J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. T. F., and E. J. Friebele, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006).
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J., H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
[CrossRef] [PubMed]

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, "Dispersive wave blue-shift in supercontinuum generation," Opt. Express 14, 11997-12007 (2006).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

M. Nakazawa, K. R. Tamura, H. Kubota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Opt. Lett. (23)

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 11, 464-466 (1986).
[CrossRef] [PubMed]

J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
[CrossRef] [PubMed]

A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett. 13, 770-772 (1988).
[CrossRef] [PubMed]

M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Broad bandwidths from frequency-shifting solitons in fibers," Opt. Lett. 14, 370-372 (1989).
[CrossRef] [PubMed]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, "Soliton pulse compression in dispersion-decreasing fiber," Opt. Lett. 18, 476-478 (1993).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, "Comb-like dispersion profiled fiber for soliton pulse train generation," Opt. Lett. 19, 539-541 (1994).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

W. C. McFerran, J. J. Swann, B. R. Washburn, and N. R. Newbury, "Elimination of pump-induced frequency jitter on fiber-laser frequency combs," Opt. Lett. 31, 1997-1999 (2006).
[CrossRef] [PubMed]

J. H. Lee, Y. Takushima, and K. Kikuchi, "Continuous-wave super continuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber," Opt. Lett. 30, 2599-2601 (2005).
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005).
[CrossRef] [PubMed]

A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
[CrossRef]

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, "Supercontinuum self-Q-switched ytterbium fiber laser," Opt. Lett. 22, 298-300 (1997).
[CrossRef] [PubMed]

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, "Gigahertz-repetition rate mode-locked fiber laser for continuum generation," Opt. Lett. 25, 1418-1420 (2000).
[CrossRef]

G. Chang, T. B. Norris, and H. G. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression," Opt. Lett. 28, 546-548 (2003).
[CrossRef] [PubMed]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, "All-fiber octave-spanning supercontinuum," Opt. Lett. 28, 643-645 (2003).
[CrossRef] [PubMed]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

A. K. Abeeluck, C. Headley, and C. G. Jørgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004).
[CrossRef] [PubMed]

H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1μm," Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004).
[CrossRef] [PubMed]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5μm," Opt. Lett. 29, 2846-2848 (2004).
[CrossRef]

A. K. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005).
[CrossRef] [PubMed]

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615/1-9 (2004).
[CrossRef]

Phys. Rev. Lett. (5)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Y. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, 213902/1-4 (2005).
[CrossRef]

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904/1-4 (2003).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Pis'ma Zh. Eksp. Teor. Fiz. (2)

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 12, 756-760 (1986) E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin,[Sov. Tech. Phys. Lett. 12, 311-313 (1986)].

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," Pis'ma Zh. Eksp. Teor. Fiz. 41, 242-244 (1985) E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev[JETP Lett. 41, 294-297 (1985)].
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 3011705-1708 (2003).
[CrossRef] [PubMed]

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

To avoid any ambiguity, we note explicitly that "decreasing anomalous GVD" corresponds to a variation from anomalous toward normal dispersion values.

J. W. Lou, T. J. Xia, O. Boyraz, C.-X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter supercontinuum spectra in dispersion tailored fibers," in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuH6, pp. 32-34.

R.R.Alfano, ed., The Supercontinuum Laser Source (Springer, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

GVD curve showing (a) D (ps/nm/km) and (b) β 2 ( ps 2 km ) for the PCF used in simulations at 1060 nm .

Fig. 2
Fig. 2

For pulses of (a) 50 fs and 10 kW peak power and (b) 250 fs and 100 kW peak power, the figure shows the SC spectral (left) and temporal (right) evolution over a propagation distance of 20 cm of PCF. Note the different temporal spans between (a) and (b).

Fig. 3
Fig. 3

For pulses of (a) 50 fs and 10 kW peak power and (b) 250 fs and 100 kW peak power, the figure shows the output spectra (bottom curves, left axis) and corresponding degree of coherence (top curves, right axis) after propagation in 20 cm of PCF. For the spectral plots, the gray curves show the individual spectra from the ensemble, while the solid curve shows the calculated mean.

Fig. 4
Fig. 4

Average coherence of the SC versus soliton order N calculated for pump wavelengths of 1060 (circles), 1070 (crosses), and 1080 nm (diamonds) and with pulse durations in the range 50 500 fs and peak powers 1 10 kW . Propagation in 25 cm of PCF is considered.

Fig. 5
Fig. 5

For input wavelengths of (a) 1060 and (b) 1080 nm and pulse durations as indicated, the graph shows the maximum input soliton number N to use for a given normalized propagation distance L L fiss to obtain an average coherence g av > 0.95 . The regime of coherence is to the left of the plotted curves as indicated by the arrows.

Fig. 6
Fig. 6

Dispersion profile for the DF-DDF as described in the text, at selected fiber lengths as shown. The zero line is shown to highlight the variation in the separation between the two ZDWs with distance.

Fig. 7
Fig. 7

For one simulation, evolution of spectral (left) and temporal intensity (right) for a 5 ps duration, 1 W peak power pulse at 1550 nm propagating in a DF-DDF as described in the text.

Fig. 8
Fig. 8

Further details of the dynamical evolution shown in Fig. 7. (a) Evolution from one simulation of peak power P 0 ( z ) , pulse duration (FWHM) Δ τ ( z ) and (for propagation distance z < L 0 ) the associated soliton order. (b) Results from 20 simulations showing the output spectra (bottom curves, left axis) and corresponding degree of coherence (top curve, right axis). For the spectral plots, the gray curves show the individual spectra from the ensemble while the solid line shows the calculated mean.

Fig. 9
Fig. 9

Projected axis spectrogram of the output pulse of Fig. 7 illustrating how the flattened spectrum is associated with a complex modulated temporal structure. The gate function used in the spectrogram calculation had a duration (FWHM) of Δ τ = 1 ps , the same as the initial pump pulse.

Fig. 10
Fig. 10

For input pulses at higher peak powers as shown, top, results from 20 simulations showing the output spectra (bottom curves, left axis) and corresponding degree of coherence (top curve, right axis). For the spectral plots, the gray curves show the individual spectra from the ensemble while the solid line shows the calculated mean. Bottom, evolution of the soliton number with propagation for distances less than L 0 .

Fig. 11
Fig. 11

(a) Spectral and (b) temporal profiles illustrating pulse compression. The dashed curves show the spectra and nonlinearly compressed pulse after a propagation distance of 5 m in the soliton compression regime. The shading in the temporal plot is used to illustrate the broad pedestal. The solid curves show the spectra and compressed pulse after ideal spectral phase compensation after a propagation distance of 7 m in the SC generation regime with significant dispersive wave generation.

Tables (1)

Tables Icon

Table 1 Dispersion Coefficients for the GVD of the PCF Used in Simulations at 1060 nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A k 2 i k + 1 k ! β k k A t k = i γ ( 1 + i τ shock t )
× [ A ( z , t ) ( + R ( t ) A ( z , t t ) 2 d t + i Γ R ) ( z , t ) ] .
g 12 ( 1 ) ( λ , t 1 t 2 ) = A ̃ 1 * ( λ , t 1 ) A ̃ 2 ( λ , t 2 ) A ̃ 1 ( λ , t 1 ) 2 A ̃ 2 ( λ , t 2 ) 2 .

Metrics