Abstract

We present a detailed analytical self-consistent theory based on wave kinetic equations that describes generation spectrum and output power of a Raman fiber laser (RFL). It is shown both theoretically and experimentally that the quasi-degenerate four-wave mixing (FWM) between different longitudinal modes is the main broadening mechanism in the one-stage RFL at high powers. The shape and power dependence of the intracavity Stokes wave spectrum are in excellent quantitative agreement with predictions of the theory. FWM-induced stochasticity of the amplitude and the phase of each of the 106 longitudinal modes generated in the RFL cavity is an example of a light-wave turbulence in a fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription