Abstract

A modified T-matrix method is presented to compute the scattered fields of various realistically shaped particles; then the radiation forces on the particles can be calculated via the Maxwell stress tensor integral. Numerical results of transverse trapping efficiencies of a focused Gaussian beam on ellipsoidal and spherical particles with the same volume are compared, which show that the shape and orientation of particles affect the maximal transverse trapping force and the displacement corresponding to the maximum. The effect of the polarization direction of the incident beam on the transverse trapping forces is also revealed.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical trapping of spheroidal particles in Gaussian beams

Stephen H. Simpson and Simon Hanna
J. Opt. Soc. Am. A 24(2) 430-443 (2007)

Calculation of optical forces on an ellipsoid using vectorial ray tracing method

Jin-Hua Zhou, Min-Cheng Zhong, Zi-Qiang Wang, and Yin-Mei Li
Opt. Express 20(14) 14928-14937 (2012)

Numerical calculation of interparticle forces arising in association with holographic assembly

Stephen H. Simpson and Simon Hanna
J. Opt. Soc. Am. A 23(6) 1419-1431 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription