Abstract

The finite-difference time-domain (FDTD) and frequency-domain finite-element (FE) methods are used to study chirped pulse propagation in 2D photonic crystal (PhC) waveguides. Chirped pulse FDTD has been implemented, which allows the study of pulse propagation in a direct way. The carrier wavelength of the pulse is swept across the bandwidth of a mini-stop-band (MSB) feature, and pulse compression behavior is observed. Both round-hole and square-hole PhC waveguides are studied, with the latter giving increased pulse compression. A group-delay analysis is then used to understand the compression behavior, and this shows how the fast-light regime that occurs within the MSB plays an important role in the observed pulse compression.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  2. T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, "Observation of pulse compression in photonic crystal coupled cavity waveguides," J. Lightwave Technol. 22, 514-519 (2004).
    [CrossRef]
  3. A. Yu. Petrov and M. Eich, "Dispersion compensation with photonic crystal line-defect waveguides," IEEE J. Sel. Areas Commun. 23, 1396-1401 (2005).
    [CrossRef]
  4. A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, "Pulse compression in line defect photonic waveguide," in Optical Fiber Communication Conference, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper OWD5.
  5. M. Davanço, A. Xing, J. Raring, E. L. Hu, and D. J. Blumenthal, "Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide," Opt. Express 13, 4931-4938 (2005).
    [CrossRef] [PubMed]
  6. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1992).
  7. T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).
  8. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  9. S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
    [CrossRef]
  10. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11, 1490-1496 (2003).
    [CrossRef] [PubMed]
  11. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
    [CrossRef]
  12. M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.
  13. See http://www.cs.wise.edu/condor/.
  14. See www.comsol.com.
  15. M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, "Calculation of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method," IEEE Photon. Technol. Lett. 17, 58-60 (2005).
    [CrossRef]
  16. D. Hamilton, MSc thesis, "Time domain modelling of pulse compression in photonic crystals using Agilent's Advanced Design Software (ADS)" (University of Bristol, 2005).
  17. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  18. S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal pulse propagation in linear and nonlinear photonic grating structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
    [CrossRef]

2005 (4)

A. Yu. Petrov and M. Eich, "Dispersion compensation with photonic crystal line-defect waveguides," IEEE J. Sel. Areas Commun. 23, 1396-1401 (2005).
[CrossRef]

M. Davanço, A. Xing, J. Raring, E. L. Hu, and D. J. Blumenthal, "Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide," Opt. Express 13, 4931-4938 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, "Calculation of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method," IEEE Photon. Technol. Lett. 17, 58-60 (2005).
[CrossRef]

2004 (1)

2003 (2)

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11, 1490-1496 (2003).
[CrossRef] [PubMed]

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal pulse propagation in linear and nonlinear photonic grating structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

1997 (1)

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1992).

Belmonte, M.

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal pulse propagation in linear and nonlinear photonic grating structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

Benisty, H.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11, 1490-1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Blumenthal, D. J.

M. Davanço, A. Xing, J. Raring, E. L. Hu, and D. J. Blumenthal, "Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide," Opt. Express 13, 4931-4938 (2005).
[CrossRef] [PubMed]

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, "Pulse compression in line defect photonic waveguide," in Optical Fiber Communication Conference, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper OWD5.

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Camatel, S.

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, "Pulse compression in line defect photonic waveguide," in Optical Fiber Communication Conference, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper OWD5.

Cao, T.

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Chai, Y. J.

Cowin, M.

M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.

Craddock, I. J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, "Calculation of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method," IEEE Photon. Technol. Lett. 17, 58-60 (2005).
[CrossRef]

M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Cryan, M.

M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.

Cryan, M. J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, "Calculation of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method," IEEE Photon. Technol. Lett. 17, 58-60 (2005).
[CrossRef]

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Davanço, M.

M. Davanço, A. Xing, J. Raring, E. L. Hu, and D. J. Blumenthal, "Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide," Opt. Express 13, 4931-4938 (2005).
[CrossRef] [PubMed]

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, "Pulse compression in line defect photonic waveguide," in Optical Fiber Communication Conference, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper OWD5.

De La Rue, R. M.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Eggleton, B. J.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Eich, M.

A. Yu. Petrov and M. Eich, "Dispersion compensation with photonic crystal line-defect waveguides," IEEE J. Sel. Areas Commun. 23, 1396-1401 (2005).
[CrossRef]

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Galbraith, I.

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Hamilton, D.

D. Hamilton, MSc thesis, "Time domain modelling of pulse compression in photonic crystals using Agilent's Advanced Design Software (ADS)" (University of Bristol, 2005).

Hill, M.

M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.

Houdré, R.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11, 1490-1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Hu, E. L.

M. Davanço, A. Xing, J. Raring, E. L. Hu, and D. J. Blumenthal, "Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide," Opt. Express 13, 4931-4938 (2005).
[CrossRef] [PubMed]

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, "Pulse compression in line defect photonic waveguide," in Optical Fiber Communication Conference, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper OWD5.

Karle, T.

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, "Observation of pulse compression in photonic crystal coupled cavity waveguides," J. Lightwave Technol. 22, 514-519 (2004).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, "Observation of pulse compression in photonic crystal coupled cavity waveguides," J. Lightwave Technol. 22, 514-519 (2004).
[CrossRef]

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11, 1490-1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Laporta, P.

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal pulse propagation in linear and nonlinear photonic grating structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

Litchinitser, N. M.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Longhi, S.

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal pulse propagation in linear and nonlinear photonic grating structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

Madsen, C. K.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Marano, M.

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal pulse propagation in linear and nonlinear photonic grating structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

Morgan, C. N.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Oesterle, U.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Olivier, S.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11, 1490-1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Patterson, D. B.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Petrov, A. Yu.

A. Yu. Petrov and M. Eich, "Dispersion compensation with photonic crystal line-defect waveguides," IEEE J. Sel. Areas Commun. 23, 1396-1401 (2005).
[CrossRef]

Railton, C. J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, "Calculation of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method," IEEE Photon. Technol. Lett. 17, 58-60 (2005).
[CrossRef]

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.

Raring, J.

Rattier, M.

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Rorison, J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, "Calculation of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method," IEEE Photon. Technol. Lett. 17, 58-60 (2005).
[CrossRef]

M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Smith, C. J. M.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11, 1490-1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Varrazza, R.

M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.

Weisbuch, C.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11, 1490-1496 (2003).
[CrossRef] [PubMed]

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

White, I. H.

Wong, D. C. L.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, "Calculation of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method," IEEE Photon. Technol. Lett. 17, 58-60 (2005).
[CrossRef]

Xing, A.

M. Davanço, A. Xing, J. Raring, E. L. Hu, and D. J. Blumenthal, "Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide," Opt. Express 13, 4931-4938 (2005).
[CrossRef] [PubMed]

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, "Pulse compression in line defect photonic waveguide," in Optical Fiber Communication Conference, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper OWD5.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yu, S.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, "Calculation of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method," IEEE Photon. Technol. Lett. 17, 58-60 (2005).
[CrossRef]

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.

Zhang, J.-Z.

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

IEEE J. Sel. Areas Commun. (1)

A. Yu. Petrov and M. Eich, "Dispersion compensation with photonic crystal line-defect waveguides," IEEE J. Sel. Areas Commun. 23, 1396-1401 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal pulse propagation in linear and nonlinear photonic grating structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, "Calculation of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method," IEEE Photon. Technol. Lett. 17, 58-60 (2005).
[CrossRef]

J. Lightwave Technol. (2)

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, "Observation of pulse compression in photonic crystal coupled cavity waveguides," J. Lightwave Technol. 22, 514-519 (2004).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, "Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Other (8)

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, "Pulse compression in line defect photonic waveguide," in Optical Fiber Communication Conference, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper OWD5.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1992).

T. Cao, M. J. Cryan, I. J. Craddock, J.-Z. Zhang, I. Galbraith, T. Karle, S. Yu, J. Rorison, and C. J. Railton, "Modelling of a 2D photonic crystal waveguide pulse reshaper integrated with a SOA," in Conference on Lasers and Electro-Optics (CLEO/EUROPE), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

D. Hamilton, MSc thesis, "Time domain modelling of pulse compression in photonic crystals using Agilent's Advanced Design Software (ADS)" (University of Bristol, 2005).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

M. Cryan, R. Varrazza, M. Cowin, M. Hill, I. J. Craddock, S. Yu, C. J. Railton, and J. Rorison, "Design and simulation of a photonic crystal waveguide filter using the FDTD method," in Proceedings of Lasers and Electro-Optics Society (IEEE, 2002), pp. 516-517.

See http://www.cs.wise.edu/condor/.

See www.comsol.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

FDTD model of a narrowed W3 PhC waveguide with a = 480 nm , r a = 0.329 , Γ K direction, n = 3.24 , length = 10 μ m . FDTD mesh size in horizontal and vertical directions = 10 nm .

Fig. 2
Fig. 2

FDTD simulated transmission for the waveguide of Fig. 1.

Fig. 3
Fig. 3

Ratio of output pulse width, t 1 , to input pulse width, t 0 , for the waveguide of Fig. 1 as the carrier wavelength is swept across the MSB for different chirp values, C. t 1 t 0 < 1 = compression , 900 fs pulse width.

Fig. 4
Fig. 4

Output pulses in the time domain for five wavelengths from Fig. 3. The value of the chirp is 2.

Fig. 5
Fig. 5

FDTD and FEMLAB simulated transmissions for the PhC waveguide in Fig. 1.

Fig. 6
Fig. 6

Comparison of FDTD and FEMLAB calculated ratios of output pulse width, t 1 , to input pulse width, t 0 for the round-hole PhC waveguide as the carrier wavelength is swept across the MSB for C = 1 ( t 1 t 0 < 1 = compression ) .

Fig. 7
Fig. 7

FDTD model of a narrowed square-hole PhC waveguide with a = 480 nm , W3 guide in the Γ K direction, n = 3.24 , square holes = 280 nm × 280 nm .

Fig. 8
Fig. 8

FDTD simulated transmission for the waveguide of Fig. 7.

Fig. 9
Fig. 9

Ratio of output pulse width, t 1 , to input pulse width, t 0 , for the waveguide of Fig. 7 as the carrier wavelength is swept across the MSB for different chirp values, C. t 1 t 0 < 1 = compression , 900 fs pulse.

Fig. 10
Fig. 10

Pulse compression in the waveguide of Fig. 7 with greater wavelength resolution; pulse width = 900 fs .

Fig. 11
Fig. 11

Dispersion parameter for both square holes at 20 nm mesh and round holes at 10 nm mesh, C = 2

Fig. 12
Fig. 12

GD of the input 900 fs linear chirp ( C = 2 ) pulse; the carrier wavelength is at the maximum pulse compression point for both round holes at 1518 nm and square holes at 1535 nm , respectively.

Fig. 13
Fig. 13

Parallel RLC circuit to fit the MSB. 50 Ω impedances are assumed at input and output.

Fig. 14
Fig. 14

Comparison of the transmission between the parallel RLC circuit and the 10 μ m long modified W3 for round holes. R = 486 Ω , L = ( 7.53 × 10 16 ) H , C = ( 8.6 × 10 16 ) F .

Fig. 15
Fig. 15

Comparison of the transmission between the parallel RLC circuit and the 10 μ m long modified W3 for square holes. R = 338 Ω , L = ( 3.1516 × 10 16 ) H , C = ( 2.1 × 10 15 ) F .

Fig. 16
Fig. 16

GD of the 10 μ m long modified W3 for both round holes and square holes.

Fig. 17
Fig. 17

Linear chirp ( C = 2 ) pulse compression of the 10 μ m long modified W3 for both round holes and square holes, respectively.

Fig. 18
Fig. 18

Spectra of both input and output pulses at the maximum compression wavelength on the short-wavelength side of the MSB for both round holes at 1515 nm and square holes at 1532 nm .

Fig. 19
Fig. 19

GD of output pulse at the maximum compression wavelength on the short-wavelength side of the MSB for both round holes at 1515 nm and square holes at 1532 nm .

Fig. 20
Fig. 20

Spectra of both input and output pulses at the maximum compression wavelength on the long-wavelength side of the MSB for both round holes at 1518 nm and square holes at 1535 nm .

Fig. 21
Fig. 21

GD of output pulse at the maximum compression wavelength on the long-wavelength side of the MSB for both round holes at 1518 nm and square holes at 1535 nm .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = exp ( 1 2 ( t d ) 2 t 0 2 ) cos ( ω 0 t ( 1 2 C ( t d ) 2 t 0 2 ) ) ,
d ϕ d t = ω 0 ( C ( t d ) t 0 2 ) .
d 2 ϕ d t 2 = d ω d t = C t 0 2 .
β 2 C < 0 .
( T 1 T 0 ) 2 = ( 1 + C β 2 z T 0 2 ) 2 + ( β 2 z T 0 2 ) 2 .
GD = d ϕ d ω .
ϕ = arctan ( imag ( E ( ω ) ) real ( E ( ω ) ) ) .

Metrics