Abstract

Two types of supermode noise spurs, uncorrelated and correlated, are measured for two different types of harmonically mode-locked lasers utilizing a dual grating pulse shaper as a means to determine the correlation. The correlated supermode noise spur, as measured with the residual phase noise technique, is related to the excitation of multiple correlated optical supermodes in the spectral domain and has a large impact on the noise behavior of optical pulse trains after propagation through a long optical fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yilmaz, C. M. DePriest, P. J. Delfyett, A. Braun, and J. Abeles, "Measurement of residual phase noise and longitudinal-mode linewidth in a hybridly mode-locked external linear cavity semiconductor laser," Opt. Lett. 27, 872-874 (2002).
    [CrossRef]
  2. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, "Simultaneous optical comb frequency stabilization and super mode noise suppression of harmonically modelocked semiconductor ring laser using an intracavity etalon," IEEE Photon. Technol. Lett. 17, 199-201 (2005).
    [CrossRef]
  3. N. Duling III, R. P. Moeller, and T. R. Clark, "Active filtering of the amplitude noise of a modelocked fiber laser," in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000).
  4. E. R. Thoen, M. E. Grein, E. M. Koontz, E. P. Ippen, H. A. Haus, and L. A. Kolodziejski, "Stabilization of an actively mode-locked fiber laser using two-photon absorption," Opt. Lett. 25, 948-951 (2000).
    [CrossRef]
  5. F. Rana, H. L. T. Lee, R. J. Ram, M. E. Grein, L. A. Jiang, E. P. Ippen, and H. A. Haus, "Characterization of the noise and correlations in harmonically mode-locked lasers," J. Opt. Soc. Am. B 19, 2609-2621 (2002).
    [CrossRef]
  6. T. Yilmaz, "Modelocked external-cavity semiconductor laser noise characterization and application to photonic arbitrary waveform generation," Ph.D. dissertation (University of Central Florida, 2003).
  7. H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulation lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
    [CrossRef]
  8. G. T. Harvey and L. F. Mollenauer, Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission, Opt. Lett. 18, 107-109 (1993).
    [CrossRef] [PubMed]
  9. D. H. Reitze, A. M. Weiner, and D. E. Leaird, "Shaping of wide bandwidth 2 femtosecond optical pulses," Appl. Phys. Lett. 61, 1260-1262 (1992).
    [CrossRef]
  10. S. T. Cundiff, "Phase stabilization of ultrashort optical pulses," J. Phys. D 35, R43-R59 (2002).
    [CrossRef]
  11. S. Machia and Y. Yamamoto, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
    [CrossRef]
  12. N. H. Jensen, H. Olesen, and K. E. Stubkjaer, "Partition noise in semiconductor lasers under CW and pulsed operation," IEEE J. Quantum Electron. 23, 71-80 (1987).
    [CrossRef]
  13. M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling III, "Pulse dropout in harmonically mode-locked fiber lasers," IEEE Photon. Technol. Lett. 20, 266-268 (2000).
    [CrossRef]
  14. M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, "Quantum-limited timing jitter in actively modelocked lasers," IEEE J. Quantum Electron. 40, 1458-1470, j(2004).
    [CrossRef]
  15. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. J. Kane, "Measuring ultrashort lasers in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  16. V. Wong and I. A. Walmsley, "Analysis of ultrashort pulse-shape measurement using linear interferometers," Opt. Lett. 19, 287-289 (1994).
    [CrossRef] [PubMed]

2005

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, "Simultaneous optical comb frequency stabilization and super mode noise suppression of harmonically modelocked semiconductor ring laser using an intracavity etalon," IEEE Photon. Technol. Lett. 17, 199-201 (2005).
[CrossRef]

2004

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, "Quantum-limited timing jitter in actively modelocked lasers," IEEE J. Quantum Electron. 40, 1458-1470, j(2004).
[CrossRef]

2002

2000

E. R. Thoen, M. E. Grein, E. M. Koontz, E. P. Ippen, H. A. Haus, and L. A. Kolodziejski, "Stabilization of an actively mode-locked fiber laser using two-photon absorption," Opt. Lett. 25, 948-951 (2000).
[CrossRef]

M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling III, "Pulse dropout in harmonically mode-locked fiber lasers," IEEE Photon. Technol. Lett. 20, 266-268 (2000).
[CrossRef]

1997

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. J. Kane, "Measuring ultrashort lasers in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

1994

1993

1992

D. H. Reitze, A. M. Weiner, and D. E. Leaird, "Shaping of wide bandwidth 2 femtosecond optical pulses," Appl. Phys. Lett. 61, 1260-1262 (1992).
[CrossRef]

1987

S. Machia and Y. Yamamoto, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
[CrossRef]

N. H. Jensen, H. Olesen, and K. E. Stubkjaer, "Partition noise in semiconductor lasers under CW and pulsed operation," IEEE J. Quantum Electron. 23, 71-80 (1987).
[CrossRef]

1968

H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulation lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
[CrossRef]

Abeles, J.

Braun, A.

Carruthers, T. F.

M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling III, "Pulse dropout in harmonically mode-locked fiber lasers," IEEE Photon. Technol. Lett. 20, 266-268 (2000).
[CrossRef]

Chen, Y.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, "Quantum-limited timing jitter in actively modelocked lasers," IEEE J. Quantum Electron. 40, 1458-1470, j(2004).
[CrossRef]

Clark, T. R.

N. Duling III, R. P. Moeller, and T. R. Clark, "Active filtering of the amplitude noise of a modelocked fiber laser," in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000).

Cundiff, S. T.

S. T. Cundiff, "Phase stabilization of ultrashort optical pulses," J. Phys. D 35, R43-R59 (2002).
[CrossRef]

Delfyett, P. J.

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, "Simultaneous optical comb frequency stabilization and super mode noise suppression of harmonically modelocked semiconductor ring laser using an intracavity etalon," IEEE Photon. Technol. Lett. 17, 199-201 (2005).
[CrossRef]

T. Yilmaz, C. M. DePriest, P. J. Delfyett, A. Braun, and J. Abeles, "Measurement of residual phase noise and longitudinal-mode linewidth in a hybridly mode-locked external linear cavity semiconductor laser," Opt. Lett. 27, 872-874 (2002).
[CrossRef]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. J. Kane, "Measuring ultrashort lasers in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

DePriest, C. M.

Duling, I. N.

M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling III, "Pulse dropout in harmonically mode-locked fiber lasers," IEEE Photon. Technol. Lett. 20, 266-268 (2000).
[CrossRef]

Duling, N.

N. Duling III, R. P. Moeller, and T. R. Clark, "Active filtering of the amplitude noise of a modelocked fiber laser," in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000).

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. J. Kane, "Measuring ultrashort lasers in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Gee, S.

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, "Simultaneous optical comb frequency stabilization and super mode noise suppression of harmonically modelocked semiconductor ring laser using an intracavity etalon," IEEE Photon. Technol. Lett. 17, 199-201 (2005).
[CrossRef]

Grein, M. E.

Haken, H.

H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulation lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
[CrossRef]

Harvey, G. T.

Haus, H. A.

Horowitz, M.

M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling III, "Pulse dropout in harmonically mode-locked fiber lasers," IEEE Photon. Technol. Lett. 20, 266-268 (2000).
[CrossRef]

Ippen, E. P.

Jensen, N. H.

N. H. Jensen, H. Olesen, and K. E. Stubkjaer, "Partition noise in semiconductor lasers under CW and pulsed operation," IEEE J. Quantum Electron. 23, 71-80 (1987).
[CrossRef]

Jiang, L. A.

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. J. Kane, "Measuring ultrashort lasers in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Kolodziejski, L. A.

Koontz, E. M.

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. J. Kane, "Measuring ultrashort lasers in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Leaird, D. E.

D. H. Reitze, A. M. Weiner, and D. E. Leaird, "Shaping of wide bandwidth 2 femtosecond optical pulses," Appl. Phys. Lett. 61, 1260-1262 (1992).
[CrossRef]

Lee, H. L. T.

Machia, S.

S. Machia and Y. Yamamoto, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
[CrossRef]

Menyuk, C. R.

M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling III, "Pulse dropout in harmonically mode-locked fiber lasers," IEEE Photon. Technol. Lett. 20, 266-268 (2000).
[CrossRef]

Moeller, R. P.

N. Duling III, R. P. Moeller, and T. R. Clark, "Active filtering of the amplitude noise of a modelocked fiber laser," in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000).

Mollenauer, L. F.

Olesen, H.

N. H. Jensen, H. Olesen, and K. E. Stubkjaer, "Partition noise in semiconductor lasers under CW and pulsed operation," IEEE J. Quantum Electron. 23, 71-80 (1987).
[CrossRef]

Ozharar, S.

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, "Simultaneous optical comb frequency stabilization and super mode noise suppression of harmonically modelocked semiconductor ring laser using an intracavity etalon," IEEE Photon. Technol. Lett. 17, 199-201 (2005).
[CrossRef]

Pauthier, M.

H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulation lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
[CrossRef]

Quinlan, F.

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, "Simultaneous optical comb frequency stabilization and super mode noise suppression of harmonically modelocked semiconductor ring laser using an intracavity etalon," IEEE Photon. Technol. Lett. 17, 199-201 (2005).
[CrossRef]

Ram, R. J.

Rana, F.

Reitze, D. H.

D. H. Reitze, A. M. Weiner, and D. E. Leaird, "Shaping of wide bandwidth 2 femtosecond optical pulses," Appl. Phys. Lett. 61, 1260-1262 (1992).
[CrossRef]

Stubkjaer, K. E.

N. H. Jensen, H. Olesen, and K. E. Stubkjaer, "Partition noise in semiconductor lasers under CW and pulsed operation," IEEE J. Quantum Electron. 23, 71-80 (1987).
[CrossRef]

Sweetster, J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. J. Kane, "Measuring ultrashort lasers in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Thoen, E. R.

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. J. Kane, "Measuring ultrashort lasers in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Walmsley, I. A.

Weiner, A. M.

D. H. Reitze, A. M. Weiner, and D. E. Leaird, "Shaping of wide bandwidth 2 femtosecond optical pulses," Appl. Phys. Lett. 61, 1260-1262 (1992).
[CrossRef]

Wong, V.

Yamamoto, Y.

S. Machia and Y. Yamamoto, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
[CrossRef]

Yilmaz, T.

T. Yilmaz, C. M. DePriest, P. J. Delfyett, A. Braun, and J. Abeles, "Measurement of residual phase noise and longitudinal-mode linewidth in a hybridly mode-locked external linear cavity semiconductor laser," Opt. Lett. 27, 872-874 (2002).
[CrossRef]

T. Yilmaz, "Modelocked external-cavity semiconductor laser noise characterization and application to photonic arbitrary waveform generation," Ph.D. dissertation (University of Central Florida, 2003).

Appl. Phys. Lett.

D. H. Reitze, A. M. Weiner, and D. E. Leaird, "Shaping of wide bandwidth 2 femtosecond optical pulses," Appl. Phys. Lett. 61, 1260-1262 (1992).
[CrossRef]

IEEE J. Quantum Electron.

N. H. Jensen, H. Olesen, and K. E. Stubkjaer, "Partition noise in semiconductor lasers under CW and pulsed operation," IEEE J. Quantum Electron. 23, 71-80 (1987).
[CrossRef]

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, "Quantum-limited timing jitter in actively modelocked lasers," IEEE J. Quantum Electron. 40, 1458-1470, j(2004).
[CrossRef]

H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulation lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, "Simultaneous optical comb frequency stabilization and super mode noise suppression of harmonically modelocked semiconductor ring laser using an intracavity etalon," IEEE Photon. Technol. Lett. 17, 199-201 (2005).
[CrossRef]

M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling III, "Pulse dropout in harmonically mode-locked fiber lasers," IEEE Photon. Technol. Lett. 20, 266-268 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

S. T. Cundiff, "Phase stabilization of ultrashort optical pulses," J. Phys. D 35, R43-R59 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

S. Machia and Y. Yamamoto, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
[CrossRef]

Rev. Sci. Instrum.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. J. Kane, "Measuring ultrashort lasers in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Other

N. Duling III, R. P. Moeller, and T. R. Clark, "Active filtering of the amplitude noise of a modelocked fiber laser," in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000).

T. Yilmaz, "Modelocked external-cavity semiconductor laser noise characterization and application to photonic arbitrary waveform generation," Ph.D. dissertation (University of Central Florida, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Spectral domain pictures of harmonic mode locking. Left: description of the side mode generation and injection locking between modes separated by f m indicating that the mode-locking mechanism provides a fixed phase relationship only among modes within each supermode but not among modes from different optical supermodes. Center: Interpretation of the entire optical mode as a superposition of optical supermodes. Right: Resulting rf noise spectrum indicating the origin of supermode noises.

Fig. 2
Fig. 2

Schematic of setup. Ref: rf source; PD, photo detector; BS, beam splitter; G, grating; L, lens; S, slit; m, mirror.

Fig. 3
Fig. 3

Typical laser output characteristics of the actively mode-locked fiber ring laser. (a) Optical spectrum, (b) intensity autocorrelation, (c) sampling scope trace, and (d) residual phase noise measurement.

Fig. 4
Fig. 4

Typical laser output characteristics of the actively mode-locked semiconductor ring laser. (a) Optical spectrum, (b) intensity autocorrelation, (c) sampling scope trace, and (d) residual phase noise measurement.

Fig. 5
Fig. 5

Closer look at (a), (b) the optical spectrum of the actively mode-locked fiber ring laser and (c), (d) the semiconductor ring laser.

Fig. 6
Fig. 6

First-harmonic spur of supermode noise and autocorrelation width versus added dispersion of actively mode-locked fiber ring laser.

Fig. 7
Fig. 7

First-harmonic spur of supermode noise and autocorrelation width versus added dispersion of actively mode-locked semiconductor ring laser.

Fig. 8
Fig. 8

Spectral amplitude modification versus supermode noise spur of actively mode-locked semiconductor ring laser (matching pairs of optical and rf spectra from top to bottom order).

Fig. 9
Fig. 9

Scenario for supermode noise spur suppression by supermode correlation.

Fig. 10
Fig. 10

Amplitude noise spectra. (a) Fiber mode-locked laser, (b) semiconductor mode-locked laser.

Fig. 11
Fig. 11

Simulation of supermode noise spur versus added dispersion (a) Temporal behavior of laser output (black squares indicate temporal phase for each pulse), (b) spectral behavior of laser output, and (c) intensity of first supermode spur versus added group delay dispersion (GDD). T R , cavity round-trip time, and f m ; mode-locking frequency.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E n = ε n exp ( i ω n t + i ϕ n ) .
i p h , m n = 2 ε n ε m cos [ ( ω m ω n ) t + ( ϕ m ϕ n ) ] .
i p h , Δ ω = n , m , Δ ω = ω m ω n 2 ε n ε m cos [ Δ ω t + ( ϕ m ϕ n ) ] .
i p h , Δ ω = n , m , Δ ω = ω m ω n 2 ε n ε m cos ( Δ ω t + ( ϕ m ϕ n ) + k 2 z ( ( ω m ω 0 ) 2 ( ω n ω 0 ) 2 ) ) .

Metrics