Abstract

An automated magnetometer suitable for long lasting measurement under stable and controllable experimental conditions has been implemented. The device is based on coherent population trapping (CPT) produced by a multifrequency excitation. CPT resonance is observed when a frequency comb, generated by diode laser current modulation, excites Cs atoms confined in a π4×(2.5)2×1cm3, 2  Torr N2 buffered cell. A fully optical sensor is connected through an optical fiber to the laser head allowing for truly remote sensing and minimization of the field perturbation. A detailed analysis of the CPT resonance parameters as a function of the optical detuning has been made in order to get high sensitivity measurements. The magnetic field monitoring performances and the best sensitivity obtained in a balanced differential configuration of the sensor are presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Bloom, "Principles of operation of the rubidium vapor magnetometer," Appl. Opt. 1, 61-68 (1962).
    [CrossRef]
  2. I. K. Kominis, T. W. Kornack, J. C. Allerd, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 569-599 (2003).
    [CrossRef]
  3. V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
    [CrossRef]
  4. G. Bison, R. Wynands, and A. Weis, "A laser-pumped magnetometer for the mapping of human cardio-magnetic fields," Appl. Phys. B 76, 325-328 (2003).
    [CrossRef]
  5. G. Bison, R. Wynands, and A. Weis, "Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor," Opt. Express 11, 904-909 (2003).
    [CrossRef] [PubMed]
  6. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapors," Nuovo Cimento Soc. Ital. Fis. 36, 5-20 (1976).
    [CrossRef]
  7. E. Arimondo and G. Orriols, "Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optically pumping," Lett. Nuovo Cimento Soc. Ital. Fis. 17, 333-338 (1976).
    [CrossRef]
  8. M. Scully and M. Fleischhauer, "High-sensitivity magnetometer based on index-enhanced media," Phys. Rev. Lett. 69, 1360-1363 (1992).
    [CrossRef] [PubMed]
  9. M. Fleischhauer and M. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
    [CrossRef] [PubMed]
  10. J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, "Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam," Phys. Rev. Lett. 48, 867-870 (1982).
    [CrossRef]
  11. P. Hemmer, M. Shahrair, H. Lamela-Rivera, S. Smith, B. Bernacki, and S. Ezekiel, "Semiconductor laser excitation of Ramsey fringes by using a Raman transition in a cesium atomic beam," J. Opt. Soc. Am. B 10, 1326-1329 (1993).
    [CrossRef]
  12. C. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693-1708 (1981).
    [CrossRef]
  13. S. Harris, "Lasers without inversion: interference of lifetime-broadened resonances," Phys. Rev. Lett. 62, 1033-1036 (1989).
    [CrossRef] [PubMed]
  14. O. Kocharovskaya, "Amplification and lasing without inversion," Phys. Rep. 219, 175-190 (1992).
    [CrossRef]
  15. C. Cohen-Tannoudji and W. Phillips, "New mechanism for laser cooling," Phys. Today 43, 33-40 (1990).
    [CrossRef]
  16. C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, "An all-optical, high-sensitivity magnetic gradiometer," Appl. Phys. B: Lasers and Optics 75, 605-612 (2002).
    [CrossRef]
  17. J. C. Allred, R. N. Lyman, T. W. Kornak, and M. V. Romalis, "High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation," Phys. Rev. Lett. 89, 130801 (2002).
    [CrossRef] [PubMed]
  18. Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
    [CrossRef]
  19. D. Budker, W. Gawlik, D. F. Kimball, M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1154-1201 (2002).
    [CrossRef]
  20. E. Arimondo, "Coherent population trapping in laser spectroscopy," Prog. Opt. 35, 257-354 (1996).
    [CrossRef]
  21. C. Cohen-Tannoudji, J. Dupon-Roc, and G. Grynberg, Atom-Photon Interaction (Wiley, 1992).
  22. http://magnetometer. fisica. unisi. it/lab.
  23. http://www.ingv. it/geomag/laquila. htm.

2006 (1)

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

2003 (4)

G. Bison, R. Wynands, and A. Weis, "A laser-pumped magnetometer for the mapping of human cardio-magnetic fields," Appl. Phys. B 76, 325-328 (2003).
[CrossRef]

G. Bison, R. Wynands, and A. Weis, "Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor," Opt. Express 11, 904-909 (2003).
[CrossRef] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allerd, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 569-599 (2003).
[CrossRef]

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

2002 (3)

D. Budker, W. Gawlik, D. F. Kimball, M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1154-1201 (2002).
[CrossRef]

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, "An all-optical, high-sensitivity magnetic gradiometer," Appl. Phys. B: Lasers and Optics 75, 605-612 (2002).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornak, and M. V. Romalis, "High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation," Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef] [PubMed]

1996 (1)

E. Arimondo, "Coherent population trapping in laser spectroscopy," Prog. Opt. 35, 257-354 (1996).
[CrossRef]

1994 (1)

M. Fleischhauer and M. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (2)

M. Scully and M. Fleischhauer, "High-sensitivity magnetometer based on index-enhanced media," Phys. Rev. Lett. 69, 1360-1363 (1992).
[CrossRef] [PubMed]

O. Kocharovskaya, "Amplification and lasing without inversion," Phys. Rep. 219, 175-190 (1992).
[CrossRef]

1990 (1)

C. Cohen-Tannoudji and W. Phillips, "New mechanism for laser cooling," Phys. Today 43, 33-40 (1990).
[CrossRef]

1989 (1)

S. Harris, "Lasers without inversion: interference of lifetime-broadened resonances," Phys. Rev. Lett. 62, 1033-1036 (1989).
[CrossRef] [PubMed]

1982 (1)

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, "Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam," Phys. Rev. Lett. 48, 867-870 (1982).
[CrossRef]

1981 (1)

C. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693-1708 (1981).
[CrossRef]

1976 (2)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapors," Nuovo Cimento Soc. Ital. Fis. 36, 5-20 (1976).
[CrossRef]

E. Arimondo and G. Orriols, "Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optically pumping," Lett. Nuovo Cimento Soc. Ital. Fis. 17, 333-338 (1976).
[CrossRef]

1962 (1)

Acosta, V.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Affolderbach, C.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, "An all-optical, high-sensitivity magnetic gradiometer," Appl. Phys. B: Lasers and Optics 75, 605-612 (2002).
[CrossRef]

Allerd, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allerd, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 569-599 (2003).
[CrossRef]

Allred, J. C.

J. C. Allred, R. N. Lyman, T. W. Kornak, and M. V. Romalis, "High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation," Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef] [PubMed]

Alzetta, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapors," Nuovo Cimento Soc. Ital. Fis. 36, 5-20 (1976).
[CrossRef]

Andreeva, Ch.

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

Arimondo, E.

E. Arimondo, "Coherent population trapping in laser spectroscopy," Prog. Opt. 35, 257-354 (1996).
[CrossRef]

E. Arimondo and G. Orriols, "Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optically pumping," Lett. Nuovo Cimento Soc. Ital. Fis. 17, 333-338 (1976).
[CrossRef]

Bernacki, B.

Bevilacqua, G.

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

Biancalana, V.

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

Bison, G.

G. Bison, R. Wynands, and A. Weis, "Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor," Opt. Express 11, 904-909 (2003).
[CrossRef] [PubMed]

G. Bison, R. Wynands, and A. Weis, "A laser-pumped magnetometer for the mapping of human cardio-magnetic fields," Appl. Phys. B 76, 325-328 (2003).
[CrossRef]

Bloom, A. L.

Budker, D.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

D. Budker, W. Gawlik, D. F. Kimball, M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1154-1201 (2002).
[CrossRef]

Cartaleva, S.

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

Caves, C.

C. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693-1708 (1981).
[CrossRef]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji and W. Phillips, "New mechanism for laser cooling," Phys. Today 43, 33-40 (1990).
[CrossRef]

C. Cohen-Tannoudji, J. Dupon-Roc, and G. Grynberg, Atom-Photon Interaction (Wiley, 1992).

Dancheva, Y.

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

Dupon-Roc, J.

C. Cohen-Tannoudji, J. Dupon-Roc, and G. Grynberg, Atom-Photon Interaction (Wiley, 1992).

Ezekiel, S.

P. Hemmer, M. Shahrair, H. Lamela-Rivera, S. Smith, B. Bernacki, and S. Ezekiel, "Semiconductor laser excitation of Ramsey fringes by using a Raman transition in a cesium atomic beam," J. Opt. Soc. Am. B 10, 1326-1329 (1993).
[CrossRef]

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, "Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam," Phys. Rev. Lett. 48, 867-870 (1982).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer and M. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

M. Scully and M. Fleischhauer, "High-sensitivity magnetometer based on index-enhanced media," Phys. Rev. Lett. 69, 1360-1363 (1992).
[CrossRef] [PubMed]

Gawlik, W.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

D. Budker, W. Gawlik, D. F. Kimball, M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1154-1201 (2002).
[CrossRef]

Gozzini, A.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapors," Nuovo Cimento Soc. Ital. Fis. 36, 5-20 (1976).
[CrossRef]

Grynberg, G.

C. Cohen-Tannoudji, J. Dupon-Roc, and G. Grynberg, Atom-Photon Interaction (Wiley, 1992).

Harris, S.

S. Harris, "Lasers without inversion: interference of lifetime-broadened resonances," Phys. Rev. Lett. 62, 1033-1036 (1989).
[CrossRef] [PubMed]

Hemmer, P.

Hemmer, P. R.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, "Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam," Phys. Rev. Lett. 48, 867-870 (1982).
[CrossRef]

Hovde, D. C.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Karaulanov, T.

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

Kimball, D. F.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

D. Budker, W. Gawlik, D. F. Kimball, M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1154-1201 (2002).
[CrossRef]

Knappe, S.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, "An all-optical, high-sensitivity magnetic gradiometer," Appl. Phys. B: Lasers and Optics 75, 605-612 (2002).
[CrossRef]

Kocharovskaya, O.

O. Kocharovskaya, "Amplification and lasing without inversion," Phys. Rep. 219, 175-190 (1992).
[CrossRef]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allerd, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 569-599 (2003).
[CrossRef]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allerd, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 569-599 (2003).
[CrossRef]

Kornak, T. W.

J. C. Allred, R. N. Lyman, T. W. Kornak, and M. V. Romalis, "High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation," Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef] [PubMed]

Lamela-Rivera, H.

Ledbetter, M. P.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Leiby, C. C.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, "Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam," Phys. Rev. Lett. 48, 867-870 (1982).
[CrossRef]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornak, and M. V. Romalis, "High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation," Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef] [PubMed]

Marinelli, C.

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

Mariotti, E.

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

Moi, L.

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapors," Nuovo Cimento Soc. Ital. Fis. 36, 5-20 (1976).
[CrossRef]

Orriols, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapors," Nuovo Cimento Soc. Ital. Fis. 36, 5-20 (1976).
[CrossRef]

E. Arimondo and G. Orriols, "Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optically pumping," Lett. Nuovo Cimento Soc. Ital. Fis. 17, 333-338 (1976).
[CrossRef]

Phillips, W.

C. Cohen-Tannoudji and W. Phillips, "New mechanism for laser cooling," Phys. Today 43, 33-40 (1990).
[CrossRef]

Picard, R. H.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, "Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam," Phys. Rev. Lett. 48, 867-870 (1982).
[CrossRef]

Pustelny, S.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Rochester, M.

D. Budker, W. Gawlik, D. F. Kimball, M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1154-1201 (2002).
[CrossRef]

Rochester, S. M.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Romalis, M. V.

I. K. Kominis, T. W. Kornack, J. C. Allerd, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 569-599 (2003).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornak, and M. V. Romalis, "High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation," Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef] [PubMed]

Scully, M.

M. Fleischhauer and M. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

M. Scully and M. Fleischhauer, "High-sensitivity magnetometer based on index-enhanced media," Phys. Rev. Lett. 69, 1360-1363 (1992).
[CrossRef] [PubMed]

Shahrair, M.

Smith, S.

Stähler, M.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, "An all-optical, high-sensitivity magnetic gradiometer," Appl. Phys. B: Lasers and Optics 75, 605-612 (2002).
[CrossRef]

Thomas, J. E.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, "Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam," Phys. Rev. Lett. 48, 867-870 (1982).
[CrossRef]

Weis, A.

G. Bison, R. Wynands, and A. Weis, "A laser-pumped magnetometer for the mapping of human cardio-magnetic fields," Appl. Phys. B 76, 325-328 (2003).
[CrossRef]

G. Bison, R. Wynands, and A. Weis, "Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor," Opt. Express 11, 904-909 (2003).
[CrossRef] [PubMed]

D. Budker, W. Gawlik, D. F. Kimball, M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1154-1201 (2002).
[CrossRef]

Willis, C. R.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, "Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam," Phys. Rev. Lett. 48, 867-870 (1982).
[CrossRef]

Wynands, R.

G. Bison, R. Wynands, and A. Weis, "A laser-pumped magnetometer for the mapping of human cardio-magnetic fields," Appl. Phys. B 76, 325-328 (2003).
[CrossRef]

G. Bison, R. Wynands, and A. Weis, "Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor," Opt. Express 11, 904-909 (2003).
[CrossRef] [PubMed]

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, "An all-optical, high-sensitivity magnetic gradiometer," Appl. Phys. B: Lasers and Optics 75, 605-612 (2002).
[CrossRef]

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1154-1201 (2002).
[CrossRef]

Zachorowski, J.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Bison, R. Wynands, and A. Weis, "A laser-pumped magnetometer for the mapping of human cardio-magnetic fields," Appl. Phys. B 76, 325-328 (2003).
[CrossRef]

Appl. Phys. B: Lasers and Optics (2)

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, "An all-optical, high-sensitivity magnetic gradiometer," Appl. Phys. B: Lasers and Optics 75, 605-612 (2002).
[CrossRef]

Ch. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B: Lasers and Optics 76, 667-675 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Lett. Nuovo Cimento Soc. Ital. Fis. (1)

E. Arimondo and G. Orriols, "Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optically pumping," Lett. Nuovo Cimento Soc. Ital. Fis. 17, 333-338 (1976).
[CrossRef]

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allerd, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 569-599 (2003).
[CrossRef]

Nuovo Cimento Soc. Ital. Fis. (1)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapors," Nuovo Cimento Soc. Ital. Fis. 36, 5-20 (1976).
[CrossRef]

Opt. Express (1)

Phys. Rep. (1)

O. Kocharovskaya, "Amplification and lasing without inversion," Phys. Rep. 219, 175-190 (1992).
[CrossRef]

Phys. Rev. A (2)

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, "Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range," Phys. Rev. A 73, 053404 (2006).
[CrossRef]

M. Fleischhauer and M. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

Phys. Rev. D (1)

C. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693-1708 (1981).
[CrossRef]

Phys. Rev. Lett. (4)

S. Harris, "Lasers without inversion: interference of lifetime-broadened resonances," Phys. Rev. Lett. 62, 1033-1036 (1989).
[CrossRef] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornak, and M. V. Romalis, "High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation," Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef] [PubMed]

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, "Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam," Phys. Rev. Lett. 48, 867-870 (1982).
[CrossRef]

M. Scully and M. Fleischhauer, "High-sensitivity magnetometer based on index-enhanced media," Phys. Rev. Lett. 69, 1360-1363 (1992).
[CrossRef] [PubMed]

Phys. Today (1)

C. Cohen-Tannoudji and W. Phillips, "New mechanism for laser cooling," Phys. Today 43, 33-40 (1990).
[CrossRef]

Prog. Opt. (1)

E. Arimondo, "Coherent population trapping in laser spectroscopy," Prog. Opt. 35, 257-354 (1996).
[CrossRef]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, D. F. Kimball, M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1154-1201 (2002).
[CrossRef]

Other (3)

C. Cohen-Tannoudji, J. Dupon-Roc, and G. Grynberg, Atom-Photon Interaction (Wiley, 1992).

http://magnetometer. fisica. unisi. it/lab.

http://www.ingv. it/geomag/laquila. htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup. OF, optical fiber; BC, beam collimator; IBS, intensity beam splitter; BE, beam expander; NF, neutral filters; PD, photodiode.

Fig. 2
Fig. 2

Representation of Λ-system chains for the F g = 3 F e = 2 system. The quantization axis is parallel to the magnetic field and perpendicular to the laser beam. Circular polarization is decomposed in two in-quadrature linearly polarized waves, one of which is, in turn, decomposed in two counterrotating fields circularly polarized around the quantization axis. The complete scheme would also involve the hyperfine components F g = 3 F e = 3 , 4 . In the table, the gyromagnetic factors γ for all the hyperfine levels of interest are reported.

Fig. 3
Fig. 3

Pigtail laser spectrum recorded using a confocal Fabry–Perot interferometer with FSR = 1.5 GHz . The modulation frequency is 105 kHz . The inferred modulation index is 2800 .

Fig. 4
Fig. 4

FM spectroscopy of the CPT resonance at modulation frequency of 20 kHz with deviation of 20 kHz .

Fig. 5
Fig. 5

Typical CPT profile observed when scanning the modulation frequency at approximately ω L 2 π . The lock-in time constant is 30 ms with a 12 dB oct output filter, which determines the detection bandwidth of 4.16 Hz . The linewidth resulting from the fit procedure is Γ = 700 Hz .

Fig. 6
Fig. 6

(a) CPT resonance amplitude versus optical detuning (zero frequency corresponds to the maximum of the Doppler profile). The frequency positions of the three hyperfine transitions are marked with respect to the calculated Doppler profile. (b) CPT HWHM versus optical detuning.

Fig. 7
Fig. 7

CPT resonance center shift rate depending on optical detuning for a laser intensity of 36 μ W cm 2 . The value given at each point is obtained by averaging the difference in the CPT resonance centers measured 30 MHz above and 30 MHz below the corresponding value of the detuning from the maximum absorption. Error bars represent the standard deviation of each data set consisting of 150 measurements.

Fig. 8
Fig. 8

Long-lasting monitor of the Earth’s magnetic field, comparison between two different independent measurements. Upper trace: acquisition of the fluctuations of the Earth’s magnetic field modulus measured by the three-axes flux-gate magnetometer in the Geophysical Institute of L’Aquila [23]. Sampling rate is one point per minute. Lower trace: acquisition of the modulus of the Earth’s magnetic field in the Physics Department of the University of Siena. In this case, the sampling rate is 1 point each 8 s [22]. Both the direction and the strength of the magnetic field are strongly influenced by the presence of ferromagnetic objects in the laboratory and in the structure of the building.

Fig. 9
Fig. 9

Magnetic field variation registration in single reading operation. In the inset is sketched the zoom over 1 min acquisition.

Fig. 10
Fig. 10

Magnetometer response to a 300 pT p p , 0.8 Hz square-wave magnetic signal registered in differential configuration with a bandwidth determined by the lock-in time constant of 3 ms , 12 dB oct output filter and ten averages.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 ( x ̂ + i y ̂ ) exp { i [ ω 0 t + φ ( t ) + M rf cos ( Ω rf t + M PSD cos ( Ω PSD t ) ) ] } + c.c. ,
Δ B Δ ν = 1 γ × n τ V ν ,

Metrics