Abstract

We report on the photochemical recording of long-period fiber gratings (LPFGs) in a photonic crystal fiber made of pure fused silica. Such inscription is based on two-photon absorption (TPA) of high-intensity (300GWcm2) 264nm 220fs pulses and brings about LPFGs of high strength and narrow peak width. The characteristic fluence value for the inscription is 1 order of magnitude less than that for a standard telecom fiber irradiated under similar conditions. The temperature sensitivity of TPA-induced LPFGs is 300pm°C and overcomes that of LPFGs inscribed by other nonphotochemical methods by 2 orders of magnitude.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
    [CrossRef]
  2. Y. Zhu, P. Shum, J.-H. Chong, M. K. Rao, and C. Lu, "Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber," Opt. Lett. 28, 2467-2469 (2003).
    [CrossRef] [PubMed]
  3. Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, "Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber," Opt. Lett. 30, 367-369 (2005).
    [CrossRef] [PubMed]
  4. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres," Electron. Lett. 39, 349-350 (2003).
    [CrossRef]
  5. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber," Opt. Lett. 29, 38-40 (2004).
    [CrossRef] [PubMed]
  6. K. Morishita and Y. Miyake, "Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change," J. Lightwave Technol. 22, 625-630 (2004).
    [CrossRef]
  7. H. Dobb, K. Kalli, and D. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
    [CrossRef]
  8. J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, "Multiple period resonances in long period gratings in photonic crystal fibres," Opt. Quantum Electron. 38, 209-216 (2006).
    [CrossRef]
  9. H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period gratings sensors in photonic crystal fibre," Opt. Commun. 260, 184-191 (2006).
    [CrossRef]
  10. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
    [CrossRef] [PubMed]
  11. K. N. Park, T. Erdogan, and K. S. Lee, "Cladding mode coupling in long-period gratings formed in photonic crystal fibers," Opt. Commun. 26, 541-545 (2006).
    [CrossRef]
  12. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
    [CrossRef]
  13. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, 1997).
  14. A. Dragomir, D. N. Nikogosyan, A. A. Ruth, K. A. Zagorulko, and P. G. Kryukov, "Long-period fibre grating formation with 264nm femtosecond radiation," Electron. Lett. 38, 269-271 (2002).
    [CrossRef]
  15. A. Dragomir, D. N. Nikogosyan, K. Zagorulko, and P. G. Kryukov, "Inscription of long-period fibre gratings by femtosecond UV radiation," Proc. SPIE 4876, 313-320 (2003).
    [CrossRef]
  16. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
    [CrossRef] [PubMed]
  17. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high intensity femtosecond UV laserlight: comparison with other existing methods of fabrication," J. Opt. Soc. Am. B 22, 354-361 (2005).
    [CrossRef]
  18. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high intensity femtosecond UV laserlight: comparison with other existing methods of fabrication: erratum," J. Opt. Soc. Am. B 22, 1143-1143 (2005).
    [CrossRef]
  19. A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses," Opt. Commun. 246, 107-115 (2005).
    [CrossRef]
  20. A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses: erratum," Opt. Commun. 251, 229-229 (2005).
    [CrossRef]
  21. L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
    [CrossRef]
  22. G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, "Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber," Opt. Lett. 31, 2675-2677 (2006).
    [CrossRef] [PubMed]
  23. A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at λ=264nm in glasses crystals and liquids," Appl. Opt. 41, 4365-4376 (2002).
    [CrossRef]
  24. A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, "Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211nm," J. Lightwave Technol. 23, 2568-2578 (2005).
    [CrossRef]
  25. M. Göppert-Mayer, "Über Elementarakte mit zwei Quantensprüngen," Ann. Phys. 401, 273-294 (1931).
    [CrossRef]
  26. W. Kaiser and C. G. B. Garrett, "Two-photon excitation in CaF2:Eu2+," Phys. Rev. Lett. 7, 229-231 (1961).
    [CrossRef]
  27. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, "Absolute two-photon absorption coefficients at 355 and 266nm," Phys. Rev. B 17, 4620-4632 (1978).
    [CrossRef]
  28. P. Liu, R. Yen, and N. Bloembergen, "Two-photon absorption coefficients in UV window and coating materials," Appl. Opt. 18, 1015-1018 (1979).
    [CrossRef] [PubMed]
  29. A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fusedsilica and germanosilicate glass at 264nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
    [CrossRef]
  30. D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, "Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation," Chem. Phys. 77, 131-143 (1983).
    [CrossRef]
  31. O. Kittelmann and J. Ringling, "Intensity-dependent transmission properties of window materials at 193-nm irradiation," Opt. Lett. 19, 2053-2055 (1994).
    [CrossRef] [PubMed]
  32. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
    [CrossRef] [PubMed]
  33. Z. A. Weinberg, G. W. Rubloff, and E. Bassous, "Transmission photoconductivity and the experimental band gap of thermally grown SiO2 films," Phys. Rev. B 19, 3107-3117 (1979).
    [CrossRef]
  34. M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
    [CrossRef]
  35. K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157nm," Electron. Lett. 36, 2000-2001 (2000).
    [CrossRef]
  36. E. Salik, D. S. Starodubov, and J. Feinberg, "Increase of photosensitivity in Ge-doped fibers under strain," Opt. Lett. 25, 1147-1149 (2000).
    [CrossRef]
  37. L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
    [CrossRef]

2006 (4)

J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, "Multiple period resonances in long period gratings in photonic crystal fibres," Opt. Quantum Electron. 38, 209-216 (2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period gratings sensors in photonic crystal fibre," Opt. Commun. 260, 184-191 (2006).
[CrossRef]

K. N. Park, T. Erdogan, and K. S. Lee, "Cladding mode coupling in long-period gratings formed in photonic crystal fibers," Opt. Commun. 26, 541-545 (2006).
[CrossRef]

G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, "Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber," Opt. Lett. 31, 2675-2677 (2006).
[CrossRef] [PubMed]

2005 (7)

S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high intensity femtosecond UV laserlight: comparison with other existing methods of fabrication," J. Opt. Soc. Am. B 22, 354-361 (2005).
[CrossRef]

Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, "Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber," Opt. Lett. 30, 367-369 (2005).
[CrossRef] [PubMed]

S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high intensity femtosecond UV laserlight: comparison with other existing methods of fabrication: erratum," J. Opt. Soc. Am. B 22, 1143-1143 (2005).
[CrossRef]

A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, "Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211nm," J. Lightwave Technol. 23, 2568-2578 (2005).
[CrossRef]

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses," Opt. Commun. 246, 107-115 (2005).
[CrossRef]

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses: erratum," Opt. Commun. 251, 229-229 (2005).
[CrossRef]

L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

2004 (4)

2003 (5)

2002 (5)

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fusedsilica and germanosilicate glass at 264nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
[CrossRef]

A. Dragomir, D. N. Nikogosyan, A. A. Ruth, K. A. Zagorulko, and P. G. Kryukov, "Long-period fibre grating formation with 264nm femtosecond radiation," Electron. Lett. 38, 269-271 (2002).
[CrossRef]

G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
[CrossRef]

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at λ=264nm in glasses crystals and liquids," Appl. Opt. 41, 4365-4376 (2002).
[CrossRef]

2000 (3)

E. Salik, D. S. Starodubov, and J. Feinberg, "Increase of photosensitivity in Ge-doped fibers under strain," Opt. Lett. 25, 1147-1149 (2000).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157nm," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

1999 (1)

1994 (1)

1983 (1)

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, "Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation," Chem. Phys. 77, 131-143 (1983).
[CrossRef]

1979 (2)

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, "Transmission photoconductivity and the experimental band gap of thermally grown SiO2 films," Phys. Rev. B 19, 3107-3117 (1979).
[CrossRef]

P. Liu, R. Yen, and N. Bloembergen, "Two-photon absorption coefficients in UV window and coating materials," Appl. Opt. 18, 1015-1018 (1979).
[CrossRef] [PubMed]

1978 (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, "Absolute two-photon absorption coefficients at 355 and 266nm," Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

1961 (1)

W. Kaiser and C. G. B. Garrett, "Two-photon excitation in CaF2:Eu2+," Phys. Rev. Lett. 7, 229-231 (1961).
[CrossRef]

1931 (1)

M. Göppert-Mayer, "Über Elementarakte mit zwei Quantensprüngen," Ann. Phys. 401, 273-294 (1931).
[CrossRef]

Adhav, R. S.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, "Absolute two-photon absorption coefficients at 355 and 266nm," Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Bassous, E.

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, "Transmission photoconductivity and the experimental band gap of thermally grown SiO2 films," Phys. Rev. B 19, 3107-3117 (1979).
[CrossRef]

Bay, H.-W.

Bechtel, J. H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, "Absolute two-photon absorption coefficients at 355 and 266nm," Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Bennion, I.

J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, "Multiple period resonances in long period gratings in photonic crystal fibres," Opt. Quantum Electron. 38, 209-216 (2006).
[CrossRef]

Birks, T. A.

Bloembergen, N.

P. Liu, R. Yen, and N. Bloembergen, "Two-photon absorption coefficients in UV window and coating materials," Appl. Opt. 18, 1015-1018 (1979).
[CrossRef] [PubMed]

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, "Absolute two-photon absorption coefficients at 355 and 266nm," Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Bolger, G. A.

L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Brambilla, G.

Buckley, E.

Canning, J.

Chen, K. P.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157nm," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

Chiang, K. S.

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Chong, J.-H.

Dianov, E. M.

Dobb, H.

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period gratings sensors in photonic crystal fibre," Opt. Commun. 260, 184-191 (2006).
[CrossRef]

J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, "Multiple period resonances in long period gratings in photonic crystal fibres," Opt. Quantum Electron. 38, 209-216 (2006).
[CrossRef]

H. Dobb, K. Kalli, and D. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Dragomir, A.

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
[CrossRef] [PubMed]

A. Dragomir, D. N. Nikogosyan, K. Zagorulko, and P. G. Kryukov, "Inscription of long-period fibre gratings by femtosecond UV radiation," Proc. SPIE 4876, 313-320 (2003).
[CrossRef]

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fusedsilica and germanosilicate glass at 264nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at λ=264nm in glasses crystals and liquids," Appl. Opt. 41, 4365-4376 (2002).
[CrossRef]

A. Dragomir, D. N. Nikogosyan, A. A. Ruth, K. A. Zagorulko, and P. G. Kryukov, "Long-period fibre grating formation with 264nm femtosecond radiation," Electron. Lett. 38, 269-271 (2002).
[CrossRef]

Eggleton, B. J.

L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

Erdogan, T.

K. N. Park, T. Erdogan, and K. S. Lee, "Cladding mode coupling in long-period gratings formed in photonic crystal fibers," Opt. Commun. 26, 541-545 (2006).
[CrossRef]

Feinberg, J.

Février, S.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber," Opt. Lett. 29, 38-40 (2004).
[CrossRef] [PubMed]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Fotiadi, A. A.

Fu, L. B.

L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Gao, D. S.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Garrett, C. G. B.

W. Kaiser and C. G. B. Garrett, "Two-photon excitation in CaF2:Eu2+," Phys. Rev. Lett. 7, 229-231 (1961).
[CrossRef]

Göppert-Mayer, M.

M. Göppert-Mayer, "Über Elementarakte mit zwei Quantensprüngen," Ann. Phys. 401, 273-294 (1931).
[CrossRef]

Groothoff, N.

Hao, J.

Herman, P. R.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157nm," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

Hu, J.

Humbert, G.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber," Opt. Lett. 29, 38-40 (2004).
[CrossRef] [PubMed]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Kaiser, W.

W. Kaiser and C. G. B. Garrett, "Two-photon excitation in CaF2:Eu2+," Phys. Rev. Lett. 7, 229-231 (1961).
[CrossRef]

Kakarantzas, G.

Kalachev, A. I.

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses: erratum," Opt. Commun. 251, 229-229 (2005).
[CrossRef]

A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, "Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211nm," J. Lightwave Technol. 23, 2568-2578 (2005).
[CrossRef]

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses," Opt. Commun. 246, 107-115 (2005).
[CrossRef]

Kalli, K.

J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, "Multiple period resonances in long period gratings in photonic crystal fibres," Opt. Quantum Electron. 38, 209-216 (2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period gratings sensors in photonic crystal fibre," Opt. Commun. 260, 184-191 (2006).
[CrossRef]

H. Dobb, K. Kalli, and D. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Kazansky, P. G.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fusedsilica and germanosilicate glass at 264nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

Kim, J. C.

Kittelmann, O.

Kryukov, P. G.

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
[CrossRef] [PubMed]

A. Dragomir, D. N. Nikogosyan, K. Zagorulko, and P. G. Kryukov, "Inscription of long-period fibre gratings by femtosecond UV radiation," Proc. SPIE 4876, 313-320 (2003).
[CrossRef]

A. Dragomir, D. N. Nikogosyan, A. A. Ruth, K. A. Zagorulko, and P. G. Kryukov, "Long-period fibre grating formation with 264nm femtosecond radiation," Electron. Lett. 38, 269-271 (2002).
[CrossRef]

Lee, B. H.

Lee, K. S.

K. N. Park, T. Erdogan, and K. S. Lee, "Cladding mode coupling in long-period gratings formed in photonic crystal fibers," Opt. Commun. 26, 541-545 (2006).
[CrossRef]

J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
[CrossRef] [PubMed]

Li, H. P.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Lim, J. H.

Liu, P.

P. Liu, R. Yen, and N. Bloembergen, "Two-photon absorption coefficients in UV window and coating materials," Appl. Opt. 18, 1015-1018 (1979).
[CrossRef] [PubMed]

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, "Absolute two-photon absorption coefficients at 355 and 266nm," Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Lotem, H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, "Absolute two-photon absorption coefficients at 355 and 266nm," Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Lu, C.

Lyttikainen, K.

Mägi, E. C.

L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Malki, A.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber," Opt. Lett. 29, 38-40 (2004).
[CrossRef] [PubMed]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Marshall, G. D.

L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

McInerney, J. G.

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at λ=264nm in glasses crystals and liquids," Appl. Opt. 41, 4365-4376 (2002).
[CrossRef]

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fusedsilica and germanosilicate glass at 264nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

Mezentsev, V.

J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, "Multiple period resonances in long period gratings in photonic crystal fibres," Opt. Quantum Electron. 38, 209-216 (2006).
[CrossRef]

Miyake, Y.

Morishita, K.

Ng, M. N.

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Nikogosyan, D. N.

G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, "Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber," Opt. Lett. 31, 2675-2677 (2006).
[CrossRef] [PubMed]

S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high intensity femtosecond UV laserlight: comparison with other existing methods of fabrication," J. Opt. Soc. Am. B 22, 354-361 (2005).
[CrossRef]

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses," Opt. Commun. 246, 107-115 (2005).
[CrossRef]

A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, "Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211nm," J. Lightwave Technol. 23, 2568-2578 (2005).
[CrossRef]

S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high intensity femtosecond UV laserlight: comparison with other existing methods of fabrication: erratum," J. Opt. Soc. Am. B 22, 1143-1143 (2005).
[CrossRef]

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses: erratum," Opt. Commun. 251, 229-229 (2005).
[CrossRef]

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
[CrossRef] [PubMed]

A. Dragomir, D. N. Nikogosyan, K. Zagorulko, and P. G. Kryukov, "Inscription of long-period fibre gratings by femtosecond UV radiation," Proc. SPIE 4876, 313-320 (2003).
[CrossRef]

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fusedsilica and germanosilicate glass at 264nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at λ=264nm in glasses crystals and liquids," Appl. Opt. 41, 4365-4376 (2002).
[CrossRef]

A. Dragomir, D. N. Nikogosyan, A. A. Ruth, K. A. Zagorulko, and P. G. Kryukov, "Long-period fibre grating formation with 264nm femtosecond radiation," Electron. Lett. 38, 269-271 (2002).
[CrossRef]

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, "Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation," Chem. Phys. 77, 131-143 (1983).
[CrossRef]

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, 1997).

Oraevsky, A. A.

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, "Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation," Chem. Phys. 77, 131-143 (1983).
[CrossRef]

Pagnoux, D.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber," Opt. Lett. 29, 38-40 (2004).
[CrossRef] [PubMed]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Park, K. N.

K. N. Park, T. Erdogan, and K. S. Lee, "Cladding mode coupling in long-period gratings formed in photonic crystal fibers," Opt. Commun. 26, 541-545 (2006).
[CrossRef]

Petrovic, J. S.

J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, "Multiple period resonances in long period gratings in photonic crystal fibres," Opt. Quantum Electron. 38, 209-216 (2006).
[CrossRef]

Pureur, V.

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses," Opt. Commun. 246, 107-115 (2005).
[CrossRef]

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses: erratum," Opt. Commun. 251, 229-229 (2005).
[CrossRef]

Qin, L.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Rao, M. K.

Ringling, J.

Roy, P.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber," Opt. Lett. 29, 38-40 (2004).
[CrossRef] [PubMed]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Rubloff, G. W.

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, "Transmission photoconductivity and the experimental band gap of thermally grown SiO2 films," Phys. Rev. B 19, 3107-3117 (1979).
[CrossRef]

Rupasov, V. I.

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, "Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation," Chem. Phys. 77, 131-143 (1983).
[CrossRef]

Russell, P. St. J.

Ruth, A. A.

A. Dragomir, D. N. Nikogosyan, A. A. Ruth, K. A. Zagorulko, and P. G. Kryukov, "Long-period fibre grating formation with 264nm femtosecond radiation," Electron. Lett. 38, 269-271 (2002).
[CrossRef]

Salik, E.

Shum, P.

Slattery, S. A.

Smith, W. L.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, "Absolute two-photon absorption coefficients at 355 and 266nm," Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Spälter, S.

Starodubov, D. S.

Steinvurzel, P.

L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Strasser, T. A.

Tam, R.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157nm," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

Wang, Q. Y.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Webb, D.

H. Dobb, K. Kalli, and D. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Webb, D. J.

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period gratings sensors in photonic crystal fibre," Opt. Commun. 260, 184-191 (2006).
[CrossRef]

J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, "Multiple period resonances in long period gratings in photonic crystal fibres," Opt. Quantum Electron. 38, 209-216 (2006).
[CrossRef]

Wei, Z. X.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Weinberg, Z. A.

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, "Transmission photoconductivity and the experimental band gap of thermally grown SiO2 films," Phys. Rev. B 19, 3107-3117 (1979).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

Withford, M. J.

L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Yan, M.

Yen, R.

Yu, X.

Zagari, J.

Zagorulko, K.

A. Dragomir, D. N. Nikogosyan, K. Zagorulko, and P. G. Kryukov, "Inscription of long-period fibre gratings by femtosecond UV radiation," Proc. SPIE 4876, 313-320 (2003).
[CrossRef]

Zagorulko, K. A.

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
[CrossRef] [PubMed]

A. Dragomir, D. N. Nikogosyan, A. A. Ruth, K. A. Zagorulko, and P. G. Kryukov, "Long-period fibre grating formation with 264nm femtosecond radiation," Electron. Lett. 38, 269-271 (2002).
[CrossRef]

Zhang, J.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157nm," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

Zhang, Y. S.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Zheng, W.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Zhu, Y.

Ann. Phys. (1)

M. Göppert-Mayer, "Über Elementarakte mit zwei Quantensprüngen," Ann. Phys. 401, 273-294 (1931).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fusedsilica and germanosilicate glass at 264nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

Chem. Phys. (1)

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, "Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation," Chem. Phys. 77, 131-143 (1983).
[CrossRef]

Electron. Lett. (5)

L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

H. Dobb, K. Kalli, and D. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

A. Dragomir, D. N. Nikogosyan, A. A. Ruth, K. A. Zagorulko, and P. G. Kryukov, "Long-period fibre grating formation with 264nm femtosecond radiation," Electron. Lett. 38, 269-271 (2002).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157nm," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Opt. Commun. (5)

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses," Opt. Commun. 246, 107-115 (2005).
[CrossRef]

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses: erratum," Opt. Commun. 251, 229-229 (2005).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period gratings sensors in photonic crystal fibre," Opt. Commun. 260, 184-191 (2006).
[CrossRef]

K. N. Park, T. Erdogan, and K. S. Lee, "Cladding mode coupling in long-period gratings formed in photonic crystal fibers," Opt. Commun. 26, 541-545 (2006).
[CrossRef]

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Opt. Lett. (11)

Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, "Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber," Opt. Lett. 30, 367-369 (2005).
[CrossRef] [PubMed]

O. Kittelmann and J. Ringling, "Intensity-dependent transmission properties of window materials at 193-nm irradiation," Opt. Lett. 19, 2053-2055 (1994).
[CrossRef] [PubMed]

G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, "Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber," Opt. Lett. 31, 2675-2677 (2006).
[CrossRef] [PubMed]

N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
[CrossRef] [PubMed]

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
[CrossRef] [PubMed]

Y. Zhu, P. Shum, J.-H. Chong, M. K. Rao, and C. Lu, "Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber," Opt. Lett. 28, 2467-2469 (2003).
[CrossRef] [PubMed]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, "Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber," Opt. Lett. 29, 38-40 (2004).
[CrossRef] [PubMed]

J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
[CrossRef] [PubMed]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

E. Salik, D. S. Starodubov, and J. Feinberg, "Increase of photosensitivity in Ge-doped fibers under strain," Opt. Lett. 25, 1147-1149 (2000).
[CrossRef]

G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
[CrossRef]

Opt. Mater. (1)

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber gratings," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Opt. Quantum Electron. (1)

J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, "Multiple period resonances in long period gratings in photonic crystal fibres," Opt. Quantum Electron. 38, 209-216 (2006).
[CrossRef]

Phys. Rev. B (2)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, "Absolute two-photon absorption coefficients at 355 and 266nm," Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, "Transmission photoconductivity and the experimental band gap of thermally grown SiO2 films," Phys. Rev. B 19, 3107-3117 (1979).
[CrossRef]

Phys. Rev. Lett. (1)

W. Kaiser and C. G. B. Garrett, "Two-photon excitation in CaF2:Eu2+," Phys. Rev. Lett. 7, 229-231 (1961).
[CrossRef]

Proc. SPIE (1)

A. Dragomir, D. N. Nikogosyan, K. Zagorulko, and P. G. Kryukov, "Inscription of long-period fibre gratings by femtosecond UV radiation," Proc. SPIE 4876, 313-320 (2003).
[CrossRef]

Other (1)

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

UV absorption spectrum of pure fused silica before and after hydrogenation.

Fig. 2
Fig. 2

Inscription of an LPFG with 500 μ m period in hydrogenated ESM-12-01 fiber with high-intensity 264 nm fs pulses: (a) transmission loss spectrum recorded with the irradiation intensity of 298 GW cm 2 and total incident fluence of 10.1 J cm 2 ; (b) shift of wavelengths corresponding to the transmission loss peaks A, B, C, D, and E (designated in the spectrum above) versus the total incident fluence; (c) transmission loss amplitudes for the peaks A, B, C, D, and E versus the total incident fluence.

Fig. 3
Fig. 3

Inscription of an LPFG with 600 μ m period in hydrogenated ESM-12-01 fiber with high-intensity 264 nm fs pulses: (a) transmission loss spectrum recorded with the irradiation intensity of 316 GW cm 2 and total incident fluence of 8.4 J cm 2 ; (b) shift of wavelengths corresponding to the transmission loss peaks F, G, H, and I (designated in the spectrum above) versus the total incident fluence; (c) transmission loss amplitudes for the peaks F, G, H, and I versus the total incident fluence.

Fig. 4
Fig. 4

Inscription of an LPFG with 500 μ m period in H 2 -loaded SMF-28 fiber with high-intensity 264 nm fs pulses: (a) transmission loss spectrum recorded with the irradiation intensity of 311 GW cm 2 and total incident fluence of 157 J cm 2 , the peak K at this fluence value moved beyond the 1700 nm ; (b) shift of wavelengths corresponding to the transmission loss peaks K, L, M, and N versus the total incident fluence; (c) transmission loss amplitudes for the peaks K, L, M, and N versus the total incident fluence.

Fig. 5
Fig. 5

UV absorption spectrum of an LPFG with 500 μ m period fabricated in hydrogenated ESM-12-01 fiber by 264 nm fs pulses with the irradiation intensity of 293 GW cm 2 and total incident fluence of 13.7 J cm 2 : (a) before and (b) after annealing; (c) shift of the resonance wavelength for different transmission loss peaks versus temperature in annealed LPFG, for each dependence the temperature sensitivity values (in pm ° C ) are indicated.

Fig. 6
Fig. 6

UV absorption spectrum of an LPFG with 600 μ m period fabricated in hydrogenated ESM-12-01 fiber by 264 nm fs pulses with the irradiation intensity of 316 GW cm 2 and total incident fluence of 10.3 J cm 2 : (a) before and (b) after annealing; (c) shift of the resonance wavelength for different transmission loss peaks versus temperature in annealed LPFG, for each dependence the temperature sensitivity values (in pm ° C ) are indicated.

Fig. 7
Fig. 7

Shift of the resonance wavelength versus temperature for an LPFG with 500 μ m period in H 2 -loaded SMF-28 fiber fabricated in hydrogenated SMF-28 fiber by 264 nm fs pulses with the irradiation intensity of 311 GW cm 2 and total incident fluence of 255 J cm 2 . The initial transmission loss peak at 1687.8 nm was moved to 1611.2 nm during annealing. The temperature sensitivity value (in pm ° C ) is indicated.

Tables (1)

Tables Icon

Table 1 Characteristics of LPFGs Inscribed in Endlessly Single-Mode ESM-12-01 Fiber by Different Methods

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I α β ,

Metrics