Abstract

We theoretically and experimentally study changes with pump power in the polarization of an optical signal as it simultaneously experiences Kerr-effect-induced birefringence and four-wave-mixing-based parametric amplification from a copropagating pump in an optical fiber. It is shown that the changes caused by the two nonlinear optical effects are orthogonal to each other in the Stokes space. Results also show that the pump polarization state works as an attractor for signal polarization. The implications of this feature to fiber parametric amplifiers and entangled-photon sources are discussed, and a fiber polarization switch is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
    [CrossRef] [PubMed]
  2. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
    [CrossRef] [PubMed]
  4. A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  5. M. B. Nars, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled quantum-optical coherence tomography," Phys. Rev. Lett. 91, 083601 (2003).
    [CrossRef]
  6. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
    [CrossRef]
  7. U. Österberg and W. Margulis, "Experimental studies on efficient frequency doubling in glass optical fibers," Opt. Lett. 12, 57-59 (1987).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  9. M. Islam and Ö. Boyraz, "Fiber parametric amplifiers for wavelength band conversion," IEEE J. Sel. Top. Quantum Electron. 8, 527-537 (2002).
    [CrossRef]
  10. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
    [CrossRef]
  11. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  12. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photonics Technol. Lett. 14, 911-913 (2002).
    [CrossRef]
  13. K. Inoue, "Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies," J. Lightwave Technol. 12, 1916-1920 (1994).
    [CrossRef]
  14. C. J. S. de Matos, S. R. Lüthi, J. F. L. Freitas, and A. S. L. Gomes, "Multiple, polarization diverse, idler wave generation in fibers from competing four-wave mixing processes," Opt. Commun. 259, 856-860 (2006).
    [CrossRef]
  15. Q. Lin and G. P. Agrawal, "Effects of polarization-mode dispersion on fiber-based parametric amplification and wavelength conversion," Opt. Lett. 29, 1114-1116 (2004).
    [CrossRef] [PubMed]
  16. M. B. Costa e Silva, J. F. L. Freitas, C. J. S. de Matos, and A. S. L. Gomes, "Analysis of the signal polarization evolution with pump power in a fibre optical parametric amplifier," in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. 536.
  17. Q. Lin and G. P. Agrawal, "Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers," J. Opt. Soc. Am. B 21, 1216-1224 (2004).
    [CrossRef]
  18. C. McKinstrie, H. Kogelnik, R. Jopson, S. Radic, and A. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033-2055 (2004).
    [CrossRef] [PubMed]
  19. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, "Fiber-optic parametric amplifiers in the presence of polarization-mode dispersion and polarization-dependent loss," J. Lightwave Technol. 24, 3088-3096 (2006).
    [CrossRef]
  20. R. H. Stolen and A. Ashkin, "Optical Kerr effect in glass waveguide," Appl. Phys. Lett. 22, 294-296 (1973).
    [CrossRef]

2006

C. J. S. de Matos, S. R. Lüthi, J. F. L. Freitas, and A. S. L. Gomes, "Multiple, polarization diverse, idler wave generation in fibers from competing four-wave mixing processes," Opt. Commun. 259, 856-860 (2006).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, "Fiber-optic parametric amplifiers in the presence of polarization-mode dispersion and polarization-dependent loss," J. Lightwave Technol. 24, 3088-3096 (2006).
[CrossRef]

2005

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

2004

2003

M. B. Nars, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled quantum-optical coherence tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

2002

M. Islam and Ö. Boyraz, "Fiber parametric amplifiers for wavelength band conversion," IEEE J. Sel. Top. Quantum Electron. 8, 527-537 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photonics Technol. Lett. 14, 911-913 (2002).
[CrossRef]

1999

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

1994

K. Inoue, "Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies," J. Lightwave Technol. 12, 1916-1920 (1994).
[CrossRef]

1993

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

1991

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

1987

1974

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
[CrossRef]

1973

R. H. Stolen and A. Ashkin, "Optical Kerr effect in glass waveguide," Appl. Phys. Lett. 22, 294-296 (1973).
[CrossRef]

Agrawal, G. P.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
[CrossRef]

R. H. Stolen and A. Ashkin, "Optical Kerr effect in glass waveguide," Appl. Phys. Lett. 22, 294-296 (1973).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
[CrossRef]

Boyraz, Ö.

M. Islam and Ö. Boyraz, "Fiber parametric amplifiers for wavelength band conversion," IEEE J. Sel. Top. Quantum Electron. 8, 527-537 (2002).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Costa e Silva, M. B.

M. B. Costa e Silva, J. F. L. Freitas, C. J. S. de Matos, and A. S. L. Gomes, "Analysis of the signal polarization evolution with pump power in a fibre optical parametric amplifier," in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. 536.

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

de Matos, C. J. S.

C. J. S. de Matos, S. R. Lüthi, J. F. L. Freitas, and A. S. L. Gomes, "Multiple, polarization diverse, idler wave generation in fibers from competing four-wave mixing processes," Opt. Commun. 259, 856-860 (2006).
[CrossRef]

M. B. Costa e Silva, J. F. L. Freitas, C. J. S. de Matos, and A. S. L. Gomes, "Analysis of the signal polarization evolution with pump power in a fibre optical parametric amplifier," in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. 536.

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

Ekert, A. K.

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Freitas, J. F. L.

C. J. S. de Matos, S. R. Lüthi, J. F. L. Freitas, and A. S. L. Gomes, "Multiple, polarization diverse, idler wave generation in fibers from competing four-wave mixing processes," Opt. Commun. 259, 856-860 (2006).
[CrossRef]

M. B. Costa e Silva, J. F. L. Freitas, C. J. S. de Matos, and A. S. L. Gomes, "Analysis of the signal polarization evolution with pump power in a fibre optical parametric amplifier," in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. 536.

Gomes, A. S. L.

C. J. S. de Matos, S. R. Lüthi, J. F. L. Freitas, and A. S. L. Gomes, "Multiple, polarization diverse, idler wave generation in fibers from competing four-wave mixing processes," Opt. Commun. 259, 856-860 (2006).
[CrossRef]

M. B. Costa e Silva, J. F. L. Freitas, C. J. S. de Matos, and A. S. L. Gomes, "Analysis of the signal polarization evolution with pump power in a fibre optical parametric amplifier," in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. 536.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Inoue, K.

K. Inoue, "Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies," J. Lightwave Technol. 12, 1916-1920 (1994).
[CrossRef]

Islam, M.

M. Islam and Ö. Boyraz, "Fiber parametric amplifiers for wavelength band conversion," IEEE J. Sel. Top. Quantum Electron. 8, 527-537 (2002).
[CrossRef]

Jopson, R.

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Kanaev, A.

Kazovsky, L. G.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photonics Technol. Lett. 14, 911-913 (2002).
[CrossRef]

Kogelnik, H.

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Lin, Q.

Lüthi, S. R.

C. J. S. de Matos, S. R. Lüthi, J. F. L. Freitas, and A. S. L. Gomes, "Multiple, polarization diverse, idler wave generation in fibers from competing four-wave mixing processes," Opt. Commun. 259, 856-860 (2006).
[CrossRef]

Margulis, W.

Marhic, M. E.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photonics Technol. Lett. 14, 911-913 (2002).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

McKinstrie, C.

Nars, M. B.

M. B. Nars, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled quantum-optical coherence tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

Österberg, U.

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Radic, S.

Saleh, B. E. A.

M. B. Nars, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled quantum-optical coherence tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

Sergienko, A. V.

M. B. Nars, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled quantum-optical coherence tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
[CrossRef]

R. H. Stolen and A. Ashkin, "Optical Kerr effect in glass waveguide," Appl. Phys. Lett. 22, 294-296 (1973).
[CrossRef]

Teich, M. C.

M. B. Nars, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled quantum-optical coherence tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

Uesaka, K.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photonics Technol. Lett. 14, 911-913 (2002).
[CrossRef]

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Wong, K. K. Y.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photonics Technol. Lett. 14, 911-913 (2002).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Yaman, F.

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
[CrossRef]

R. H. Stolen and A. Ashkin, "Optical Kerr effect in glass waveguide," Appl. Phys. Lett. 22, 294-296 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Islam and Ö. Boyraz, "Fiber parametric amplifiers for wavelength band conversion," IEEE J. Sel. Top. Quantum Electron. 8, 527-537 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

IEEE Photonics Technol. Lett.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photonics Technol. Lett. 14, 911-913 (2002).
[CrossRef]

J. Lightwave Technol.

K. Inoue, "Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies," J. Lightwave Technol. 12, 1916-1920 (1994).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, "Fiber-optic parametric amplifiers in the presence of polarization-mode dispersion and polarization-dependent loss," J. Lightwave Technol. 24, 3088-3096 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

C. J. S. de Matos, S. R. Lüthi, J. F. L. Freitas, and A. S. L. Gomes, "Multiple, polarization diverse, idler wave generation in fibers from competing four-wave mixing processes," Opt. Commun. 259, 856-860 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

M. B. Nars, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled quantum-optical coherence tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

Science

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

Other

M. B. Costa e Silva, J. F. L. Freitas, C. J. S. de Matos, and A. S. L. Gomes, "Analysis of the signal polarization evolution with pump power in a fibre optical parametric amplifier," in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), p. 536.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Theoretical (curve) and experimental (dots) normalized output signal Stokes vector as a function of pump power for linear signal polarizations in the absence of pump of (a) + 45 ° and (b) 45 ° . Arrows indicate the direction of pump-power increase. Dots correspond to pump powers of 0, 15, 25, 45, 70, 115, 190, 310, and 500 mW .

Fig. 2
Fig. 2

Experimental configuration employed for measuring the signal and pump polarization at the gain fiber input and output.

Fig. 3
Fig. 3

Application of the FOPA for polarization switching. Experimentally measured signal polarization as a function of pump power for a vertical linear signal polarization in the absence of pump. (a) + S 1 hemisphere; (b) S 1 hemisphere.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A P z = i β P A P + i γ A P A P A P ,
A P = P 0 exp [ i ( β P + γ P P ) z ] a P ,
A j z = i β j A j + i γ ( A P A P + A P A P ) A j + i γ A m A P A P ,
A j = P 0 S exp [ i ( β j + γ P 0 Γ ̂ ) z ] a j ,
a j z = i γ P 0 exp ( i K ̑ z ) a P a P * a m * .
a S = ( cosh ( g ̂ z ) + i K ̂ 2 g ̂ sinh ( g ̂ z ) ) e ( i K ̂ z 2 ) a S 0 ,
Γ ̂ ( a P + a P ) = 2 a P + a P ,
K ̂ ( a P + a P ) = ( 4 γ P 0 + Δ β ) a P + ( 2 γ P 0 + Δ β ) a P = k a P + k a P ,
g ̂ 2 ( a P + a P ) = ( ( γ P 0 ) 2 ( k 2 ) 2 ) a P k 2 4 a P = g 2 a P + g 2 a P ,
a 1 ( z ) = a 01 P 0 S ( cosh ( g z ) + i k 2 g sinh ( g z ) ) exp [ i ( β S + 2 γ P 0 k 2 ) z ] ,
a 2 ( z ) = a 02 P 0 S ( cosh ( g z ) + i k 2 g sinh ( g z ) ) exp [ i ( β S + γ P 0 k 2 ) z ] .
S = A S σ A S A S A S ,

Metrics