Abstract

The possibility of soliton self-compression of ultrashort laser pulses down to the few-cycle regime in photonic crystal fibers is numerically investigated. We show that efficient sub-two-cycle temporal compression of nanojoule-level 800nm pulses can be achieved by employing short (typically 5mm long) commercially available photonic crystal fibers and pulse durations of around 100fs, regardless of initial linear chirp, and without the need of additional dispersion compensation techniques. We envision applications in a new generation of compact and efficient sub-two cycle laser pulse sources.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Brabec and F. Krausz, "Intense few-cycle laser fields: frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
    [CrossRef]
  2. F.X.Kartner, ed., Few-Cycle Laser Pulse Generation and Its Applications (Springer Verlag, 2004).
  3. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett. 24, 411-413 (1999).
    [CrossRef]
  4. R. Ell, U. Morgner, F. X. Kartner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett. 26, 373-375 (2001).
    [CrossRef]
  5. A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, "Optical pulse compression to 5 fs at a 1-MHz repetition rate," Opt. Lett. 22, 102-104 (1997).
    [CrossRef] [PubMed]
  6. A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control," Opt. Lett. 27, 306-308 (2002).
    [CrossRef]
  7. M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
    [CrossRef]
  8. M. Nisoli, S. D. Silvestri, O. Svelto, R. Szips, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett. 22, 522-524 (1997).
    [CrossRef] [PubMed]
  9. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, "Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum," Opt. Lett. 28, 1987-1989 (2003).
    [CrossRef] [PubMed]
  10. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, "Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation," Opt. Lett. 28, 2258-2260 (2003).
    [CrossRef] [PubMed]
  11. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983).
    [CrossRef] [PubMed]
  12. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of four optical cycles from an optimized optical fibre/grating pair/soliton pulse compressor at 1.32 μm," J. Mod. Opt. 35, 7-10 (1988).
    [CrossRef]
  13. R. H. Stolen, J. Botineau, and A. Ashkin, "Intensity discrimination of optical pulse with birefringent fibers," Opt. Lett. 7, 512-514 (1981).
    [CrossRef]
  14. K. A. Ahmed, K. C. Chan, and H.-F. Liu, "Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique," IEEE J. Sel. Top. Quantum Electron. 1, 592-600 (1995).
    [CrossRef]
  15. G.-R. Lin and I.-H. Chiu, "Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz," Opt. Express 13, 8772-8780 (2005).
    [CrossRef] [PubMed]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  17. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  18. M. A. Foster, A. Gaeta, Q. Cao, and R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Express 13, 6848-6855 (2005).
    [CrossRef] [PubMed]
  19. B. Schenkel, R. Paschotta, and U. Keller, "Pulse compression with supercontinuum generation in microstructure fibers," J. Opt. Soc. Am. B 22, 687-693 (2005).
    [CrossRef]
  20. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
    [CrossRef] [PubMed]
  21. A. D. Bessonov and A. M. Zheltikov, "Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers," Phys. Rev. E 73, 66618 (2006).
    [CrossRef]
  22. T. Brabec and F. Krausz, "Nonlinear optical pulse propagation in the single-cycle regime," Phys. Rev. Lett. 78, 3282-3285 (1995).
    [CrossRef]
  23. H. Crespo, M. V. Tognetti, M. A. Cataluna, J. T. Mendonça, and A. dos Santos, "Generation of ultra-smooth broadband spectra by gain-assisted self-phase modulation in a Ti:sapphire laser," in Ultrafast Optics V, S.Watanabe and K.Midorikawa, eds. (Springer, 2007).
    [CrossRef]
  24. M. V. Tognetti, M. N. Miranda, and H. M. Crespo, "Dispersion-managed mode-locking dynamics in a Ti:sapphire laser," Phys. Rev. A 74, 33809 (2006).
    [CrossRef]
  25. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  26. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 7, 464-466 (1986).
    [CrossRef]
  27. K. C. Chan and H. F. Liu, "Effect of third-order dispersion on soliton-effect pulse compression," Opt. Lett. 19, 49-51 (1994).
    [CrossRef] [PubMed]
  28. Y. Jiang, T. Lee, and C. G. Rose-Petruck, "Generation of ultrashort hard-x-ray pulses with tabletop laser systems at a 2-kHz repetition rate," J. Opt. Soc. Am. B 20, 229-237 (2003).
    [CrossRef]
  29. I. P. Bilinsky, J. G. Fujimoto, J. N. Walpole, and L. J. Missaggia, "Semiconductor-doped-silica saturable-absorber films for solid-state laser mode locking," Opt. Lett. 23, 1766-1768 (1998).
    [CrossRef]

2006 (3)

M. V. Tognetti, M. N. Miranda, and H. M. Crespo, "Dispersion-managed mode-locking dynamics in a Ti:sapphire laser," Phys. Rev. A 74, 33809 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

A. D. Bessonov and A. M. Zheltikov, "Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers," Phys. Rev. E 73, 66618 (2006).
[CrossRef]

2005 (4)

2003 (4)

2002 (1)

2001 (1)

2000 (1)

T. Brabec and F. Krausz, "Intense few-cycle laser fields: frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (2)

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

1995 (2)

K. A. Ahmed, K. C. Chan, and H.-F. Liu, "Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique," IEEE J. Sel. Top. Quantum Electron. 1, 592-600 (1995).
[CrossRef]

T. Brabec and F. Krausz, "Nonlinear optical pulse propagation in the single-cycle regime," Phys. Rev. Lett. 78, 3282-3285 (1995).
[CrossRef]

1994 (1)

1988 (1)

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of four optical cycles from an optimized optical fibre/grating pair/soliton pulse compressor at 1.32 μm," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

1986 (1)

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 7, 464-466 (1986).
[CrossRef]

1983 (1)

1981 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Ahmed, K. A.

K. A. Ahmed, K. C. Chan, and H.-F. Liu, "Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique," IEEE J. Sel. Top. Quantum Electron. 1, 592-600 (1995).
[CrossRef]

Angelow, G.

Ashkin, A.

Baltuska, A.

Bessonov, A. D.

A. D. Bessonov and A. M. Zheltikov, "Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers," Phys. Rev. E 73, 66618 (2006).
[CrossRef]

Biegert, J.

Bilinsky, I. P.

Boiko, A.

Botineau, J.

Brabec, T.

T. Brabec and F. Krausz, "Intense few-cycle laser fields: frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

T. Brabec and F. Krausz, "Nonlinear optical pulse propagation in the single-cycle regime," Phys. Rev. Lett. 78, 3282-3285 (1995).
[CrossRef]

Cao, Q.

Cataluna, M. A.

H. Crespo, M. V. Tognetti, M. A. Cataluna, J. T. Mendonça, and A. dos Santos, "Generation of ultra-smooth broadband spectra by gain-assisted self-phase modulation in a Ti:sapphire laser," in Ultrafast Optics V, S.Watanabe and K.Midorikawa, eds. (Springer, 2007).
[CrossRef]

Chan, K. C.

K. A. Ahmed, K. C. Chan, and H.-F. Liu, "Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique," IEEE J. Sel. Top. Quantum Electron. 1, 592-600 (1995).
[CrossRef]

K. C. Chan and H. F. Liu, "Effect of third-order dispersion on soliton-effect pulse compression," Opt. Lett. 19, 49-51 (1994).
[CrossRef] [PubMed]

Chen, H. H.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 7, 464-466 (1986).
[CrossRef]

Chen, Y.

Chiu, I.-H.

Cho, S. H.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Crespo, H.

H. Crespo, M. V. Tognetti, M. A. Cataluna, J. T. Mendonça, and A. dos Santos, "Generation of ultra-smooth broadband spectra by gain-assisted self-phase modulation in a Ti:sapphire laser," in Ultrafast Optics V, S.Watanabe and K.Midorikawa, eds. (Springer, 2007).
[CrossRef]

Crespo, H. M.

M. V. Tognetti, M. N. Miranda, and H. M. Crespo, "Dispersion-managed mode-locking dynamics in a Ti:sapphire laser," Phys. Rev. A 74, 33809 (2006).
[CrossRef]

De Silvestri, S.

dos Santos, A.

H. Crespo, M. V. Tognetti, M. A. Cataluna, J. T. Mendonça, and A. dos Santos, "Generation of ultra-smooth broadband spectra by gain-assisted self-phase modulation in a Ti:sapphire laser," in Ultrafast Optics V, S.Watanabe and K.Midorikawa, eds. (Springer, 2007).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Ell, R.

Ferencz, K.

Foster, M. A.

Fuji, T.

Fujimoto, J. G.

Gaeta, A.

Gaeta, A. L.

Gallagher, M. T.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Gomes, A. S. L.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of four optical cycles from an optimized optical fibre/grating pair/soliton pulse compressor at 1.32 μm," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

Gordon, J. P.

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of four optical cycles from an optimized optical fibre/grating pair/soliton pulse compressor at 1.32 μm," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

Haus, H. A.

Hensley, C. J.

Ippen, E. P.

Jiang, Y.

Kartner, F. X.

Keller, U.

Kobayashi, T.

Koch, K. W.

Krausz, F.

T. Brabec and F. Krausz, "Intense few-cycle laser fields: frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

M. Nisoli, S. D. Silvestri, O. Svelto, R. Szips, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett. 22, 522-524 (1997).
[CrossRef] [PubMed]

T. Brabec and F. Krausz, "Nonlinear optical pulse propagation in the single-cycle regime," Phys. Rev. Lett. 78, 3282-3285 (1995).
[CrossRef]

Lederer, M. J.

Lee, T.

Lee, Y. C.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 7, 464-466 (1986).
[CrossRef]

Lin, G.-R.

Liu, H. F.

Liu, H.-F.

K. A. Ahmed, K. C. Chan, and H.-F. Liu, "Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique," IEEE J. Sel. Top. Quantum Electron. 1, 592-600 (1995).
[CrossRef]

Luther-Davies, B.

Mendonça, J. T.

H. Crespo, M. V. Tognetti, M. A. Cataluna, J. T. Mendonça, and A. dos Santos, "Generation of ultra-smooth broadband spectra by gain-assisted self-phase modulation in a Ti:sapphire laser," in Ultrafast Optics V, S.Watanabe and K.Midorikawa, eds. (Springer, 2007).
[CrossRef]

Menyuk, C. R.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 7, 464-466 (1986).
[CrossRef]

Miranda, M. N.

M. V. Tognetti, M. N. Miranda, and H. M. Crespo, "Dispersion-managed mode-locking dynamics in a Ti:sapphire laser," Phys. Rev. A 74, 33809 (2006).
[CrossRef]

Missaggia, L. J.

Mollenauer, L. F.

Morgner, U.

Morita, R.

Nisoli, M.

Oka, K.

Ouzounov, D. G.

Paschotta, R.

Pshenichnikov, M. S.

Rose-Petruck, C. G.

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sansone, G.

Sartania, S.

Schenkel, B.

Scheuer, V.

Silvestri, S. D.

Spielmann, C.

Stagira, S.

Stolen, R. H.

Suguro, A.

Svelto, O.

Szips, R.

Taylor, J. R.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of four optical cycles from an optimized optical fibre/grating pair/soliton pulse compressor at 1.32 μm," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

Tognetti, M. V.

M. V. Tognetti, M. N. Miranda, and H. M. Crespo, "Dispersion-managed mode-locking dynamics in a Ti:sapphire laser," Phys. Rev. A 74, 33809 (2006).
[CrossRef]

H. Crespo, M. V. Tognetti, M. A. Cataluna, J. T. Mendonça, and A. dos Santos, "Generation of ultra-smooth broadband spectra by gain-assisted self-phase modulation in a Ti:sapphire laser," in Ultrafast Optics V, S.Watanabe and K.Midorikawa, eds. (Springer, 2007).
[CrossRef]

Tomlinson, W. J.

Trebino, R.

Tschudi, T.

Venkateraman, N.

Vozzi, C.

Wai, P. K. A.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 7, 464-466 (1986).
[CrossRef]

Walpole, J. N.

Wei, Z.

Wiersma, D. A.

Yamane, K.

Yamashita, M.

Zhang, Z.

Zheltikov, A. M.

A. D. Bessonov and A. M. Zheltikov, "Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers," Phys. Rev. E 73, 66618 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. A. Ahmed, K. C. Chan, and H.-F. Liu, "Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique," IEEE J. Sel. Top. Quantum Electron. 1, 592-600 (1995).
[CrossRef]

J. Mod. Opt. (1)

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of four optical cycles from an optimized optical fibre/grating pair/soliton pulse compressor at 1.32 μm," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (12)

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, "Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum," Opt. Lett. 28, 1987-1989 (2003).
[CrossRef] [PubMed]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, "Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation," Opt. Lett. 28, 2258-2260 (2003).
[CrossRef] [PubMed]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 7, 464-466 (1986).
[CrossRef]

R. H. Stolen, J. Botineau, and A. Ashkin, "Intensity discrimination of optical pulse with birefringent fibers," Opt. Lett. 7, 512-514 (1981).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983).
[CrossRef] [PubMed]

K. C. Chan and H. F. Liu, "Effect of third-order dispersion on soliton-effect pulse compression," Opt. Lett. 19, 49-51 (1994).
[CrossRef] [PubMed]

A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, "Optical pulse compression to 5 fs at a 1-MHz repetition rate," Opt. Lett. 22, 102-104 (1997).
[CrossRef] [PubMed]

M. Nisoli, S. D. Silvestri, O. Svelto, R. Szips, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett. 22, 522-524 (1997).
[CrossRef] [PubMed]

I. P. Bilinsky, J. G. Fujimoto, J. N. Walpole, and L. J. Missaggia, "Semiconductor-doped-silica saturable-absorber films for solid-state laser mode locking," Opt. Lett. 23, 1766-1768 (1998).
[CrossRef]

U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett. 24, 411-413 (1999).
[CrossRef]

R. Ell, U. Morgner, F. X. Kartner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett. 26, 373-375 (2001).
[CrossRef]

A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control," Opt. Lett. 27, 306-308 (2002).
[CrossRef]

Phys. Rev. A (1)

M. V. Tognetti, M. N. Miranda, and H. M. Crespo, "Dispersion-managed mode-locking dynamics in a Ti:sapphire laser," Phys. Rev. A 74, 33809 (2006).
[CrossRef]

Phys. Rev. E (1)

A. D. Bessonov and A. M. Zheltikov, "Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers," Phys. Rev. E 73, 66618 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

T. Brabec and F. Krausz, "Nonlinear optical pulse propagation in the single-cycle regime," Phys. Rev. Lett. 78, 3282-3285 (1995).
[CrossRef]

Rev. Mod. Phys. (2)

T. Brabec and F. Krausz, "Intense few-cycle laser fields: frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science (1)

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (3)

F.X.Kartner, ed., Few-Cycle Laser Pulse Generation and Its Applications (Springer Verlag, 2004).

H. Crespo, M. V. Tognetti, M. A. Cataluna, J. T. Mendonça, and A. dos Santos, "Generation of ultra-smooth broadband spectra by gain-assisted self-phase modulation in a Ti:sapphire laser," in Ultrafast Optics V, S.Watanabe and K.Midorikawa, eds. (Springer, 2007).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Group-velocity dispersion of the highly nonlinear PCF BlazePhotonics NL-1.6-670 (obtained from the manufacturer’s data).

Fig. 2
Fig. 2

Scheme of the compression process.

Fig. 3
Fig. 3

Spectra, spectral phases, and temporal profiles corresponding to (a) z = 0 , (b) z = 4 mm , (c) z = 5 mm , (d) z = 6 mm for a 30 fs laser pulse of initial energy E = 5 × 10 10 J that has been temporally broadened to 119 fs .

Fig. 4
Fig. 4

(a) Quality factor, (b) temporal width, and (c) relative intensity of the secondary peak as a function of propagation distance inside the PCF for the same initial pulse of Fig. 3. The dotted vertical lines denote the fiber length.

Fig. 5
Fig. 5

(a) Minimum final temporal width and (b) quality factor as a function of the initial pulse energy obtained by integrating the GNSE [curves (1)], neglecting higher-order dispersion [curves (2)], neglecting self-steepening and delayed Raman response [curves (3)], and integrating the NSE [curves (4)]. The reported values correspond to the narrowest obtainable pulse with a prepulse–postpulse intensity lower than 0.3 times the pulse peak value.

Fig. 6
Fig. 6

Single-cycle pulse obtained for the same initial pulse of Figs. 3, 4, in the hypothesis of a completely flat dispersion profile, i.e., β ( ω ) 1 2 β 2 ( ω 0 ) ( ω ω 0 ) 2 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z = i + β ( ω ) A ̃ ( z , ω ) e i ω t d ω + i B [ A ( z , t ) , t ] ,
β ( ω ) = n = 2 + β n ( ω 0 ) ( ω ω 0 ) n
B [ A ( z , t ) , t ] = γ ( 1 + i ω 0 t ) [ A ( z , t ) 0 + R ( t ) A ( z , t t ) 2 d t ]
R ( t ) = ( 1 f R ) δ ( t ) f R h R ( t ) ,
h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) ,
F c 4.1 N ,
z opt ( 0.32 N + 1.1 N 2 ) z 0 ,

Metrics