Abstract

We conduct the experimental investigation of arbitrarily shaped ultrashort pulse propagation through angularly dispersive systems, a pair of gratings, and a pair of prisms, in the linear regime. The propagation time has been explained by the net group delay in the context of centroid of energy arrival as the definition of the pulse propagation time. The temporal positions of the centroid of energy are apparently the same for both transform-limited coherent and arbitrary pulses, despite the fact that the pulses suffer severe distortion owing to strong group-velocity dispersion during propagation through the dispersive systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001).
    [CrossRef] [PubMed]
  2. J. Peatross, S. A. Glasgow, and M. Ware, "Average energy flow of optical pulses in dispersive media," Phys. Rev. Lett. 84, 2370-2373 (2000).
    [CrossRef] [PubMed]
  3. N. A. Cartwright and K. E. Oughstun, "Pulse centroid velocity of the Poynting vector," J. Opt. Soc. Am. A 21, 439-450 (2004).
    [CrossRef]
  4. M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
    [CrossRef]
  5. M. Pessot, J. Squier, G. Mourou, and D. J. Harter, "Chirped-pulse amplification of 100-fsec pulses," Opt. Lett. 14, 797-799 (1989).
    [CrossRef] [PubMed]
  6. J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE J. Quantum Electron. QE-22, 182-185 (1986).
    [CrossRef]
  7. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tunnermann, "High-average-power femtosecond fiber chirped-pulse amplification system," Opt. Lett. 28, 1984-1986 (2003).
    [CrossRef] [PubMed]
  8. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spüler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002).
    [CrossRef]
  9. M. Ware, W. E. Dibble, S. A. Glasgow, and J. Peatross, "Energy flow in angularly dispersive optical systems," J. Opt. Soc. Am. B 18, 839-845 (2001).
    [CrossRef]
  10. A. I. Talukder, T. Haruta, and M. Tomita, "Measurement of net group and reshaping delays for optical pulses in dispersive media," Phys. Rev. Lett. 94, 223901 (2005).
    [CrossRef] [PubMed]
  11. A. I. Talukder and M. Tomita, "Asymmetric optical pulse propagation through a resonant absorber," Phys. Rev. A 72, 051802(R) (2005).
    [CrossRef]
  12. L. Nanda, A. Basu, and S. A. Ramakrishna, "Delay times and detector times for optical pulses traversing plasmas and negative refractive media," Phys. Rev. E 74, 036601 (2006).
    [CrossRef]
  13. A. I. Talukder, K. Totsuka, and M. Tomita, "Propagation of arbitrarily shaped femtosecond laser pulses through a photonic crystal fiber," Appl. Phys. Lett. 89, 054103 (2006).
    [CrossRef]
  14. R. L. Fork, C. V. Shank, R. Yen, and C. A. Hirlimann, "Femtosecond optical pulses," IEEE J. Quantum Electron. QE-19, 500-506 (1983).
    [CrossRef]
  15. R. L. Fork and O. E. Martinez, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 150-152 (1984).
    [CrossRef] [PubMed]
  16. R. L. Fork, "Optical frequency filter for ultrashort pulses," Opt. Lett. 11, 629-631 (1986).
    [CrossRef] [PubMed]
  17. M. M. Wefers and K. A. Nelson, "Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators," J. Opt. Soc. Am. B 12, 1343-1362 (1995).
    [CrossRef]

2006 (2)

L. Nanda, A. Basu, and S. A. Ramakrishna, "Delay times and detector times for optical pulses traversing plasmas and negative refractive media," Phys. Rev. E 74, 036601 (2006).
[CrossRef]

A. I. Talukder, K. Totsuka, and M. Tomita, "Propagation of arbitrarily shaped femtosecond laser pulses through a photonic crystal fiber," Appl. Phys. Lett. 89, 054103 (2006).
[CrossRef]

2005 (2)

A. I. Talukder, T. Haruta, and M. Tomita, "Measurement of net group and reshaping delays for optical pulses in dispersive media," Phys. Rev. Lett. 94, 223901 (2005).
[CrossRef] [PubMed]

A. I. Talukder and M. Tomita, "Asymmetric optical pulse propagation through a resonant absorber," Phys. Rev. A 72, 051802(R) (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

2001 (2)

M. Ware, W. E. Dibble, S. A. Glasgow, and J. Peatross, "Energy flow in angularly dispersive optical systems," J. Opt. Soc. Am. B 18, 839-845 (2001).
[CrossRef]

A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Peatross, S. A. Glasgow, and M. Ware, "Average energy flow of optical pulses in dispersive media," Phys. Rev. Lett. 84, 2370-2373 (2000).
[CrossRef] [PubMed]

1995 (1)

1989 (1)

1987 (1)

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

1986 (2)

J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE J. Quantum Electron. QE-22, 182-185 (1986).
[CrossRef]

R. L. Fork, "Optical frequency filter for ultrashort pulses," Opt. Lett. 11, 629-631 (1986).
[CrossRef] [PubMed]

1984 (1)

1983 (1)

R. L. Fork, C. V. Shank, R. Yen, and C. A. Hirlimann, "Femtosecond optical pulses," IEEE J. Quantum Electron. QE-19, 500-506 (1983).
[CrossRef]

Amagishi, Y.

A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001).
[CrossRef] [PubMed]

Basu, A.

L. Nanda, A. Basu, and S. A. Ramakrishna, "Delay times and detector times for optical pulses traversing plasmas and negative refractive media," Phys. Rev. E 74, 036601 (2006).
[CrossRef]

Cartwright, N. A.

Clausnitzer, T.

Dibble, W. E.

Fork, R. L.

Fry, A. R.

Fuchs, H.-J.

Glasgow, S. A.

M. Ware, W. E. Dibble, S. A. Glasgow, and J. Peatross, "Energy flow in angularly dispersive optical systems," J. Opt. Soc. Am. B 18, 839-845 (2001).
[CrossRef]

J. Peatross, S. A. Glasgow, and M. Ware, "Average energy flow of optical pulses in dispersive media," Phys. Rev. Lett. 84, 2370-2373 (2000).
[CrossRef] [PubMed]

Harter, D. J.

Haruta, T.

A. I. Talukder, T. Haruta, and M. Tomita, "Measurement of net group and reshaping delays for optical pulses in dispersive media," Phys. Rev. Lett. 94, 223901 (2005).
[CrossRef] [PubMed]

Heppner, J.

J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE J. Quantum Electron. QE-22, 182-185 (1986).
[CrossRef]

Hirlimann, C. A.

R. L. Fork, C. V. Shank, R. Yen, and C. A. Hirlimann, "Femtosecond optical pulses," IEEE J. Quantum Electron. QE-19, 500-506 (1983).
[CrossRef]

Keller, U.

Kley, E.-B.

Kuhl, J.

J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE J. Quantum Electron. QE-22, 182-185 (1986).
[CrossRef]

Lefort, L.

Liem, A.

Limpert, J.

Maine, P.

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

Martinez, O. E.

Mourou, G.

M. Pessot, J. Squier, G. Mourou, and D. J. Harter, "Chirped-pulse amplification of 100-fsec pulses," Opt. Lett. 14, 797-799 (1989).
[CrossRef] [PubMed]

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

Nanda, L.

L. Nanda, A. Basu, and S. A. Ramakrishna, "Delay times and detector times for optical pulses traversing plasmas and negative refractive media," Phys. Rev. E 74, 036601 (2006).
[CrossRef]

Nelson, K. A.

Oughstun, K. E.

Paschotta, R.

Peatross, J.

M. Ware, W. E. Dibble, S. A. Glasgow, and J. Peatross, "Energy flow in angularly dispersive optical systems," J. Opt. Soc. Am. B 18, 839-845 (2001).
[CrossRef]

J. Peatross, S. A. Glasgow, and M. Ware, "Average energy flow of optical pulses in dispersive media," Phys. Rev. Lett. 84, 2370-2373 (2000).
[CrossRef] [PubMed]

Pessot, M.

M. Pessot, J. Squier, G. Mourou, and D. J. Harter, "Chirped-pulse amplification of 100-fsec pulses," Opt. Lett. 14, 797-799 (1989).
[CrossRef] [PubMed]

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

Price, J. H. V.

Ramakrishna, S. A.

L. Nanda, A. Basu, and S. A. Ramakrishna, "Delay times and detector times for optical pulses traversing plasmas and negative refractive media," Phys. Rev. E 74, 036601 (2006).
[CrossRef]

Richardson, D. J.

Schreiber, T.

Shank, C. V.

R. L. Fork, C. V. Shank, R. Yen, and C. A. Hirlimann, "Femtosecond optical pulses," IEEE J. Quantum Electron. QE-19, 500-506 (1983).
[CrossRef]

Spüler, G. J.

Squier, J.

Talukder, A. I.

A. I. Talukder, K. Totsuka, and M. Tomita, "Propagation of arbitrarily shaped femtosecond laser pulses through a photonic crystal fiber," Appl. Phys. Lett. 89, 054103 (2006).
[CrossRef]

A. I. Talukder, T. Haruta, and M. Tomita, "Measurement of net group and reshaping delays for optical pulses in dispersive media," Phys. Rev. Lett. 94, 223901 (2005).
[CrossRef] [PubMed]

A. I. Talukder and M. Tomita, "Asymmetric optical pulse propagation through a resonant absorber," Phys. Rev. A 72, 051802(R) (2005).
[CrossRef]

A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001).
[CrossRef] [PubMed]

Tomita, M.

A. I. Talukder, K. Totsuka, and M. Tomita, "Propagation of arbitrarily shaped femtosecond laser pulses through a photonic crystal fiber," Appl. Phys. Lett. 89, 054103 (2006).
[CrossRef]

A. I. Talukder and M. Tomita, "Asymmetric optical pulse propagation through a resonant absorber," Phys. Rev. A 72, 051802(R) (2005).
[CrossRef]

A. I. Talukder, T. Haruta, and M. Tomita, "Measurement of net group and reshaping delays for optical pulses in dispersive media," Phys. Rev. Lett. 94, 223901 (2005).
[CrossRef] [PubMed]

A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001).
[CrossRef] [PubMed]

Totsuka, K.

A. I. Talukder, K. Totsuka, and M. Tomita, "Propagation of arbitrarily shaped femtosecond laser pulses through a photonic crystal fiber," Appl. Phys. Lett. 89, 054103 (2006).
[CrossRef]

Tunnermann, A.

Ware, M.

M. Ware, W. E. Dibble, S. A. Glasgow, and J. Peatross, "Energy flow in angularly dispersive optical systems," J. Opt. Soc. Am. B 18, 839-845 (2001).
[CrossRef]

J. Peatross, S. A. Glasgow, and M. Ware, "Average energy flow of optical pulses in dispersive media," Phys. Rev. Lett. 84, 2370-2373 (2000).
[CrossRef] [PubMed]

Wefers, M. M.

Weston, J.

Yen, R.

R. L. Fork, C. V. Shank, R. Yen, and C. A. Hirlimann, "Femtosecond optical pulses," IEEE J. Quantum Electron. QE-19, 500-506 (1983).
[CrossRef]

Zellmer, H.

Appl. Phys. Lett. (1)

A. I. Talukder, K. Totsuka, and M. Tomita, "Propagation of arbitrarily shaped femtosecond laser pulses through a photonic crystal fiber," Appl. Phys. Lett. 89, 054103 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. L. Fork, C. V. Shank, R. Yen, and C. A. Hirlimann, "Femtosecond optical pulses," IEEE J. Quantum Electron. QE-19, 500-506 (1983).
[CrossRef]

J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE J. Quantum Electron. QE-22, 182-185 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

A. I. Talukder and M. Tomita, "Asymmetric optical pulse propagation through a resonant absorber," Phys. Rev. A 72, 051802(R) (2005).
[CrossRef]

Phys. Rev. E (1)

L. Nanda, A. Basu, and S. A. Ramakrishna, "Delay times and detector times for optical pulses traversing plasmas and negative refractive media," Phys. Rev. E 74, 036601 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

A. I. Talukder, T. Haruta, and M. Tomita, "Measurement of net group and reshaping delays for optical pulses in dispersive media," Phys. Rev. Lett. 94, 223901 (2005).
[CrossRef] [PubMed]

A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001).
[CrossRef] [PubMed]

J. Peatross, S. A. Glasgow, and M. Ware, "Average energy flow of optical pulses in dispersive media," Phys. Rev. Lett. 84, 2370-2373 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic experimental setup where a pair of gratings (G1 and G2) have been used as an angularly dispersive system. The inset shows the arrangement if the grating pair is replaced by a prism pair (P1 and P2). Mirrors: M1, M2, M3, and M4. z: the separation between the grating pair or the prism pair; SF: spatial filter.

Fig. 2
Fig. 2

Observed cross correlations of coherent (dotted curves) and arbitrary (solid curves) pulses, at 800 nm , propagated through the grating pair with a separation of (a) 0.0, (b) 11.0, (c) 17.0, (d) 23.0, and (e) 27.0 mm between them. Horizontal axis, labeled in picoseconds, for each graph is the absolute propagation time. The additional axis on the bottom displays a retarded propagation time, in which the origin is taken at the temporal COE of the coherent pulse with corresponding separation between the grating pair. In absolute delay, the temporal COEs for coherent pulses propagated through different separation (as described in the above) of the grating pair are at (a) 0.0 and (b) 51.53, (c) 77.23, (d) 104.40, and (e) 118.73 ps , while those arbitrarily shaped pulses are indicated by downward arrows. The cross correlation is seen to widen and deform significantly, evolving complicated structures with several additional peaks as shown in (e).

Fig. 3
Fig. 3

Observed propagation delays (solid circles) as a function of the separation between the grating pair. The solid line indicates the net group delay calculated from Eq. (5).

Fig. 4
Fig. 4

Observed cross correlations of coherent (dotted curves) and arbitrary shaped (solid curves) pulses, through the prism pair. The slant length between the apexes of the prism pair was fixed at 2.7 m . The x axis is set to zero at the temporal COE for transmitted coherent pulses, while the downward arrows indicate the COEs for transmitted arbitrary pulses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( ω ω c ) ϕ 0 + β ( ω ω c ) 1 2 μ ( ω ω c ) 2 + ,
β ϕ ( ω ) ω ω c = z c ( 1 + cos θ )
μ 1 2 ϕ ( ω ) ω 2 ω c = 2 π z λ Λ 2 ω c 2 1 [ 1 ( sin θ 1 λ Λ ) 2 ] ,
t out = [ t in 2 + ( μ 1 δ ω ) 2 ] 1 2 ,
Δ t = u ̂ S ( r 0 , ω ) ϕ ( ω ) ω d ω u ̂ S ( r 0 , ω ) d ω .

Metrics