Abstract

A compact noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) spectrometer, based on a narrowband erbium-doped fiber laser and an integrated optics electro-optic modulator, has been developed for trace species detection. A general theoretical description of NICE-OHMS signals demodulated at an arbitrary FM detection phase is provided in terms of the analyte concentration. Explicit expressions for Doppler-broadened NICE-OHMS line shapes, which are in excellent agreement with the measurements, are given. In a first demonstration, using a cavity with a finesse of 1400, acetylene has been detected on a Doppler-broadened transition at 1531nm. A limit of detection of 130ppt, corresponding to an absorption of 2.4×109cm1, has been obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
    [CrossRef]
  2. J. Ye, L. S. Ma, and J. L. Hall, "Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition," Opt. Lett. 21, 1000-1002 (1996).
    [CrossRef] [PubMed]
  3. J. Ye, L. S. Ma, and J. L. Hall, "Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition," IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
    [CrossRef]
  4. J. Ye, L. S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998).
    [CrossRef]
  5. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999).
    [CrossRef]
  6. C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser," Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
    [CrossRef]
  7. L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," J. Opt. Soc. Am. B 16, 2247-2254 (1999).
    [CrossRef]
  8. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
    [CrossRef]
  9. N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," J. Mol. Spectrosc. 228, 83-91 (2004).
    [CrossRef]
  10. N. J. van Leeuwen and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004).
    [CrossRef]
  11. J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
    [CrossRef] [PubMed]
  12. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, "Residual amplitude modulation in laser electro-optic phase modulation," J. Opt. Soc. Am. B 2, 1320-1326 (1985).
    [CrossRef]
  13. W. Ma, A. Foltynowicz, F. M. Schmidt, and O. Axner are preparing a paper to be called "Etalon background signals in NICE-OHMS."
  14. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
    [CrossRef]
  15. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001).
    [CrossRef]
  16. R. L. Kronig, "On the theory of dispersion of x-rays," J. Opt. Soc. Am. 12, 547-557 (1926).
    [CrossRef]
  17. H. A. Kramers, "La diffusion de la lumiére par les atomes," Atti Congr. Int. Fis. Como 2, 545-557 (1927).
  18. S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, "Line shape analysis of Doppler broadened frequency-modulated line spectra," J. Chem. Phys. 104, 2129-2135 (1996).
    [CrossRef]
  19. J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, 1988).
  20. Koheras, "Koheras Adjustik Fiber Laser System," http://www.koheras.com/Menu/Products/Ultra+Precise+Laser/ADJUSTIK%e2%84%a2/koheraslowbaradjustik.pdf.
  21. R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A 30, 2827-2829 (1984).
    [CrossRef]
  22. In the HITRAN database, the line strength for this transition, S*, is given in units of cm−2/molecule, which can be recalculated to S in units of cm−2/atm by use of the relation S=S*natm/patm, where natm is the number density of molecules in a gas at atmospheric pressure, which, for room temperature, is given by 2.5×1019 cm−3.
  23. F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 445-510.
  24. Y. He and B. J. Orr, "Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases," Appl. Phys. B 75, 267-280 (2002).
    [CrossRef]
  25. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
    [CrossRef]
  26. D. E. Vogler and M. W. Sigrist, "Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry," Appl. Phys. B 85, 349-354 (2006).
    [CrossRef]
  27. J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
    [CrossRef]
  28. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, "Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm," Opt. Express 14, 1304-1313 (2006).
    [CrossRef] [PubMed]
  29. A. O'Keefe, J. J. Scherer, and J. B. Paul, "cw integrated cavity output spectroscopy," Chem. Phys. Lett. 307, 343-349 (1999).
    [CrossRef]
  30. D. S. Baer, J. B. Paul, J. B. Gupta, and A. O'Keefe, "Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy," Appl. Phys. B 75, 261-265 (2002).
    [CrossRef]

2006 (4)

D. E. Vogler and M. W. Sigrist, "Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry," Appl. Phys. B 85, 349-354 (2006).
[CrossRef]

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
[CrossRef]

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, "Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm," Opt. Express 14, 1304-1313 (2006).
[CrossRef] [PubMed]

2005 (1)

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

2004 (3)

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

N. J. van Leeuwen and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

2002 (2)

Y. He and B. J. Orr, "Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases," Appl. Phys. B 75, 267-280 (2002).
[CrossRef]

D. S. Baer, J. B. Paul, J. B. Gupta, and A. O'Keefe, "Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy," Appl. Phys. B 75, 261-265 (2002).
[CrossRef]

2001 (1)

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

1999 (4)

A. O'Keefe, J. J. Scherer, and J. B. Paul, "cw integrated cavity output spectroscopy," Chem. Phys. Lett. 307, 343-349 (1999).
[CrossRef]

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser," Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," J. Opt. Soc. Am. B 16, 2247-2254 (1999).
[CrossRef]

L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999).
[CrossRef]

1998 (1)

1997 (2)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, "Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition," IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
[CrossRef]

1996 (2)

1985 (1)

1984 (1)

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A 30, 2827-2829 (1984).
[CrossRef]

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

1927 (1)

H. A. Kramers, "La diffusion de la lumiére par les atomes," Atti Congr. Int. Fis. Como 2, 545-557 (1927).

1926 (1)

Axner, O.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

W. Ma, A. Foltynowicz, F. M. Schmidt, and O. Axner are preparing a paper to be called "Etalon background signals in NICE-OHMS."

Baer, D. S.

D. S. Baer, J. B. Paul, J. B. Gupta, and A. O'Keefe, "Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy," Appl. Phys. B 75, 261-265 (2002).
[CrossRef]

Bjorklund, G. C.

E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, "Residual amplitude modulation in laser electro-optic phase modulation," J. Opt. Soc. Am. B 2, 1320-1326 (1985).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Bood, J.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Boucher, D.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
[CrossRef]

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A 30, 2827-2829 (1984).
[CrossRef]

Cannon, B. D.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Chen, W.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
[CrossRef]

Cousin, J.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
[CrossRef]

Crouch, S. R.

J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, 1988).

De Natale, P.

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A 30, 2827-2829 (1984).
[CrossRef]

Dube, P.

Fei, R.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, "Line shape analysis of Doppler broadened frequency-modulated line spectra," J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Foltynowicz, A.

W. Ma, A. Foltynowicz, F. M. Schmidt, and O. Axner are preparing a paper to be called "Etalon background signals in NICE-OHMS."

Fox, R. W.

Fried, A.

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 445-510.

Gagliardi, G.

Gehrtz, M.

Gianfrani, L.

Gupta, J. B.

D. S. Baer, J. B. Paul, J. B. Gupta, and A. O'Keefe, "Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy," Appl. Phys. B 75, 261-265 (2002).
[CrossRef]

Gustafsson, J.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Hall, G. E.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, "Line shape analysis of Doppler broadened frequency-modulated line spectra," J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Hall, J. L.

He, Y.

Y. He and B. J. Orr, "Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases," Appl. Phys. B 75, 267-280 (2002).
[CrossRef]

Hollberg, L.

Howard, D. L.

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

Ingle, J. D.

J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, 1988).

Ishibashi, C.

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser," Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Kassi, S.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
[CrossRef]

Kjaergaard, H. G.

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

Kluczynski, P.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Koheras,

Koheras, "Koheras Adjustik Fiber Laser System," http://www.koheras.com/Menu/Products/Ultra+Precise+Laser/ADJUSTIK%e2%84%a2/koheraslowbaradjustik.pdf.

Kramers, H. A.

H. A. Kramers, "La diffusion de la lumiére par les atomes," Atti Congr. Int. Fis. Como 2, 545-557 (1927).

Kronig, R. L.

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Lindberg, A. M.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Ma, L. S.

Ma, W.

W. Ma, A. Foltynowicz, F. M. Schmidt, and O. Axner are preparing a paper to be called "Etalon background signals in NICE-OHMS."

Maddaloni, P.

Malara, P.

Masselin, P.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
[CrossRef]

McIlroy, A.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Myers, T. L.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

North, S. W.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, "Line shape analysis of Doppler broadened frequency-modulated line spectra," J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

O'Keefe, A.

D. S. Baer, J. B. Paul, J. B. Gupta, and A. O'Keefe, "Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy," Appl. Phys. B 75, 261-265 (2002).
[CrossRef]

A. O'Keefe, J. J. Scherer, and J. B. Paul, "cw integrated cavity output spectroscopy," Chem. Phys. Lett. 307, 343-349 (1999).
[CrossRef]

Oritz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Orr, B. J.

Y. He and B. J. Orr, "Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases," Appl. Phys. B 75, 267-280 (2002).
[CrossRef]

Osborn, D. L.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Paul, J. B.

D. S. Baer, J. B. Paul, J. B. Gupta, and A. O'Keefe, "Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy," Appl. Phys. B 75, 261-265 (2002).
[CrossRef]

A. O'Keefe, J. J. Scherer, and J. B. Paul, "cw integrated cavity output spectroscopy," Chem. Phys. Lett. 307, 343-349 (1999).
[CrossRef]

Richter, D.

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 445-510.

Romanini, D.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Sasada, H.

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser," Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

Scherer, J. J.

A. O'Keefe, J. J. Scherer, and J. B. Paul, "cw integrated cavity output spectroscopy," Chem. Phys. Lett. 307, 343-349 (1999).
[CrossRef]

Schmidt, F. M.

W. Ma, A. Foltynowicz, F. M. Schmidt, and O. Axner are preparing a paper to be called "Etalon background signals in NICE-OHMS."

Sigrist, M. W.

D. E. Vogler and M. W. Sigrist, "Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry," Appl. Phys. B 85, 349-354 (2006).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Szriftgiser, P.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
[CrossRef]

Taubman, M. S.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Tittel, F. K.

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 445-510.

van Leeuwen, N. J.

N. J. van Leeuwen and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

Vogler, D. E.

D. E. Vogler and M. W. Sigrist, "Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry," Appl. Phys. B 85, 349-354 (2006).
[CrossRef]

Whittaker, E. A.

Williams, R. M.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Wilson, A. C.

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

N. J. van Leeuwen and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

Ye, J.

Zheng, X. S.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, "Line shape analysis of Doppler broadened frequency-modulated line spectra," J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Appl. Phys. B (5)

Y. He and B. J. Orr, "Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases," Appl. Phys. B 75, 267-280 (2002).
[CrossRef]

D. E. Vogler and M. W. Sigrist, "Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry," Appl. Phys. B 85, 349-354 (2006).
[CrossRef]

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, "Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared," Appl. Phys. B 83, 261-266 (2006).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

D. S. Baer, J. B. Paul, J. B. Gupta, and A. O'Keefe, "Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy," Appl. Phys. B 75, 261-265 (2002).
[CrossRef]

Atti Congr. Int. Fis. Como (1)

H. A. Kramers, "La diffusion de la lumiére par les atomes," Atti Congr. Int. Fis. Como 2, 545-557 (1927).

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Chem. Phys. Lett. (2)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

A. O'Keefe, J. J. Scherer, and J. B. Paul, "cw integrated cavity output spectroscopy," Chem. Phys. Lett. 307, 343-349 (1999).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. Ye, L. S. Ma, and J. L. Hall, "Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition," IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
[CrossRef]

J. Chem. Phys. (2)

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, "Line shape analysis of Doppler broadened frequency-modulated line spectra," J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

J. Mol. Spectrosc. (1)

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (5)

Jpn. J. Appl. Phys., Part 1 (1)

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser," Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A 30, 2827-2829 (1984).
[CrossRef]

Spectrochim. Acta, Part A (1)

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Spectrochim. Acta, Part B (1)

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Other (5)

W. Ma, A. Foltynowicz, F. M. Schmidt, and O. Axner are preparing a paper to be called "Etalon background signals in NICE-OHMS."

In the HITRAN database, the line strength for this transition, S*, is given in units of cm−2/molecule, which can be recalculated to S in units of cm−2/atm by use of the relation S=S*natm/patm, where natm is the number density of molecules in a gas at atmospheric pressure, which, for room temperature, is given by 2.5×1019 cm−3.

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 445-510.

J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, 1988).

Koheras, "Koheras Adjustik Fiber Laser System," http://www.koheras.com/Menu/Products/Ultra+Precise+Laser/ADJUSTIK%e2%84%a2/koheraslowbaradjustik.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Detailed schematic of the experimental setup. OI, optical isolator; DBM, double balanced mixer; PBS, polarizing beam splitter; PD, photodetector; Phase, phase shifter; Gain, separate gain stage. The nodes (•) stand for power splitters (or power combiners, depending on the direction of the arrows). The dotted lines indicate the FS laser beam path.

Fig. 2
Fig. 2

Doppler-broadened fm -NICE-OHMS signals from 120 ppb ( 93 μ Torr ) of C 2 H 2 , for FM detection phases set to 2.1° [(a) in the vicinity of absorption], 92.9° [(b) in the vicinity of dispersion], and 124° [(c) close to the maximum signal]. Each panel shows the background corrected analytical signal (•), the fitted line shape (curve), and the residual to the fit (in the separate window).

Fig. 3
Fig. 3

Doppler-broadened wm -NICE-OHMS signals from 120 ppb ( 93 μ Torr ) of C 2 H 2 , for FM detection phases set to 0.36 ° [(a) in the vicinity of absorption], 91.0° [(b) in the vicinity of dispersion], and 115° [(c) close to the maximum signal]. Each panel shows the background corrected analytical signal (•), the fitted line shape (curve), and the residual to the fit (in the separate window).

Fig. 4
Fig. 4

(a) Doppler-broadened fm -NICE-OHMS and (b) wm -NICE-OHMS signals recorded at various C 2 H 2 pressures, with the FM detection phases set to maximize the signals (123° and 112°, respectively). The eight curves in each panel correspond to pressures of 20, 90, 180, 290, 370, 490, 590, and 700 μ Torr (i.e., relative concentrations of 25 920 ppb ), respectively.

Fig. 5
Fig. 5

Signal strengths of fm -NICE-OHMS [(a) S 0 fm - no ] and wm -NICE-OHMS [(b) S 0 wm - no ] line shapes as a function of relative C 2 H 2 concentration. The solid curves, which represent the best fits of second-order polynomials, constitute the calibration curves for the two modes of detection. The insets show enlargements of the lowest concentration parts of the plots together with linear fits, whose slopes represent the sensitivities of the two modes of detection.

Fig. 6
Fig. 6

(a) Doppler-broadened fm -NICE-OHMS signal from 16 ppb ( 12 μ Torr ) of C 2 H 2 for an FM detection phase that maximizes the signal (solid curve) together with a corresponding empty cavity background signal (dashed curve). (b) Background corrected analytical signal (•) and the corresponding fit (curve) with the residual in the separate window below.

Fig. 7
Fig. 7

(a) Doppler-broadened wm -NICE-OHMS signal from 16 ppb ( 12 μ Torr ) of C 2 H 2 for an FM detection phase that maximizes the signal (solid curve) together with the corresponding empty cavity background signal (dashed curve). (b) Background corrected analytical signal (•) and the corresponding fit (curve) with the residual in the separate window below.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

P ( ν ) = P 0 e S χ abs ( ν ) c p L = P 0 e α 0 χ ¯ abs ( ν ) L = P 0 e α 0 c χ ¯ abs ( ν ) c rel L ,
E ( t ) = E 0 e i [ 2 π ν c t + β sin ( 2 π ν m t ) ] = E 0 e i 2 π ν c t k = J k ( β ) e i 2 π k ν m t .
E T ( ν c , t ) = E 0 e i 2 π ν c t [ J 0 ( β ) T ( ν c ) J 1 ( β ) T ( ν c ν m ) e i 2 π ν m t + J 1 ( β ) T ( ν c + ν m ) e i 2 π ν m t ] ,
T ( ν ) = e δ ( ν ) i ϕ ( ν ) .
δ ( ν ) = α 0 c 2 χ ¯ abs ( ν ) c rel L .
ϕ ( ν ) = α 0 c 2 χ ¯ disp ( ν ) c rel L ,
I ( ν c , t ) = c ε 0 E T ( ν c , t ) 2 = I 0 { 1 + 2 J 0 ( β ) J 1 ( β ) [ δ ( ν c ν m ) δ ( ν c + ν m ) ] cos ( 2 π ν m t ) + 2 J 0 ( β ) J 1 ( β ) [ ϕ ( ν c ν m ) 2 ϕ ( ν c ) + ϕ ( ν c + ν m ) ] sin ( 2 π ν m t ) } = I 0 ( 1 + J 0 ( β ) J 1 ( β ) α 0 c L { [ χ ¯ abs ( ν c ν m ) χ ¯ abs ( ν c + ν m ) ] cos ( 2 π ν m t ) + [ χ ¯ disp ( ν c ν m ) 2 χ ¯ disp ( ν c ) + χ ¯ disp ( ν c + ν m ) ] sin ( 2 π ν m t ) } c rel ) ,
S fm ( ν c , ν m , θ fm ) = η fm J 0 ( β ) J 1 ( β ) P 0 α 0 c L { [ χ ¯ abs ( ν c ν m ) χ ¯ abs ( ν c + ν m ) ] cos θ fm + [ χ ¯ disp ( ν c ν m ) 2 χ ¯ disp ( ν c ) + χ ¯ disp ( ν c + ν m ) ] sin θ fm } c rel ,
S fm - no ( ν c , ν m , θ fm ) = η fm 2 F π J 0 ( β ) J 1 ( β ) P 0 α 0 c L × { [ χ ¯ abs ( ν c ν m ) χ ¯ abs ( ν c + ν m ) ] cos θ fm + [ χ ¯ disp ( ν c ν m ) 2 χ ¯ disp ( ν c ) + χ ¯ disp ( ν c + ν m ) ] sin θ fm } c rel = ξ fm - no χ ¯ fm - no ( ν c , ν m , θ fm ) c rel = S 0 fm - no χ ¯ fm - no ( ν c , ν m , θ fm ) .
ν ( t ) = ν l + ν a cos ( 2 π f m t ) .
S ( ν ) = S w m ( ν l , ν a , t ) = n = 0 S n even ( ν l , ν a ) cos ( 2 π n f m t ) + n = 1 S n odd ( ν l , ν a ) sin ( 2 π n f m t ) ,
S n w m ( ν l , ν a ) = η w m [ S n even ( ν l , ν a ) cos θ w m + S n odd ( ν l , ν a ) sin θ wm ] ,
S n w m ( ν l , ν a ) = η w m S n even ( ν l , ν a ) cos θ w m .
S n w m - no ( ν c , ν m , ν a , θ fm ) = η w m S n fm - no , even ( ν c , ν m , ν a , θ fm ) ,
S 1 w m - no ( ν c , ν m , ν a , θ fm ) = η w m η fm 2 F π J 0 ( β ) J 1 ( β ) P 0 α 0 c L × { [ χ ¯ 1 abs , even ( ν c ν m , ν a ) χ ¯ 1 abs , even ( ν c + ν m , ν a ) ] cos θ fm + [ χ ¯ 1 disp , even ( ν c ν m , ν a ) 2 χ ¯ 1 disp , even ( ν c , ν a ) + χ ¯ 1 disp , even ( ν c + ν m , ν a ) ] sin θ fm } c rel = ξ w m - no χ ¯ 1 w m - no ( ν c , ν m , ν a , θ fm ) c rel = S 0 w m - no χ ¯ 1 w m - no ( ν c , ν m , ν a , θ fm ) ,
χ ¯ G abs ( ν ) = e 4 ln 2 ( ν ν 0 ) 2 δ ν D 2 ,
δ ν D = 2 ν 0 c 2 k T ln 2 m = 7.16 × 10 7 ν 0 T M ,
χ ¯ G disp ( ν ) = 2 π e γ 2 0 γ e γ 2 d γ ,
χ ¯ G , 1 disp , even ( ν l , ν a ) = 2 τ 0 τ χ ¯ G disp ( ν l , ν a , t ) cos ( 2 π f m t ) d t .
( c rel ) LOD fm no = 3 σ fm ξ fm no ,
( α 0 ) min = π F e B η P D 1 J 0 ( β ) J 1 ( β ) L ,

Metrics