Abstract

A microscopic theory based on Bloch electrons and holes in a two-band approximation is applied in order to compute absorption and luminescence spectra for GaAs-type quantum wells at room temperature. Special focus is set to investigate the effect of the Coulomb interaction on the linewidth of the luminescence spectra and on the radiative recombination rates.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, 2004).
  2. W. W. Chow and S. W. Koch, Semiconductor Laser Fundamentals, 1st ed. (Springer-Verlag, 1999).
  3. M. Kira and S. W. Koch, "Many-body correlations and excitonic effects in semiconductor spectroscopy," Prog. Quantum Electron. 30, 155-196 (2006).
    [CrossRef]
  4. J. Schilp, T. Kuhn, and G. Mahler, "Quantum kinetics of the coupled carrier phonon system in photoexcited semiconductors," Phys. Status Solidi B 188, 417-424 (1995).
    [CrossRef]
  5. J. Hader, J. V. Moloney, and S. W. Koch, "Supression of carrier recombination in semiconductor lasers by phase-space filling," Appl. Phys. Lett. 87, 201112 (2005).
    [CrossRef]
  6. F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
    [CrossRef] [PubMed]
  7. L. Banyai, Q. T. Vu, B. Mieck, and H. Haug, "Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering," Phys. Rev. Lett. 81, 882-885 (1998).
    [CrossRef]
  8. A. D. Andreev and E. P. O'Reilly, "Theoretical study of Auger recombination in a GaInNAs 1.3 μm quantum well structure," Appl. Phys. Lett. 84, 1826-1828 (2004).
    [CrossRef]
  9. J. Hader, J. V. Moloney, and S. W. Koch, "Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers," IEEE J. Quantum Electron. 41, 1217-1226 (2005).
    [CrossRef]
  10. W. Chow, M. Kira, and S. W. Koch, "Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells," Phys. Rev. B 60, 1947-1952 (1999).
    [CrossRef]
  11. S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, "Semiconductor excitons in new light," Nat. Mater. 5, 523-531 (2006).
    [CrossRef] [PubMed]
  12. M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures," Prog. Quantum Electron. 23, 189-279 (1999).
    [CrossRef]
  13. W. Hoyer, M. Kira, and S. W. Koch, "Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures," Phys. Rev. B 67, 155113 (2003).
    [CrossRef]
  14. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons & Atoms, 3rd ed. (Wiley, 1989).
  15. J. Fricke, "Transport equations including many-particle correlations for an arbitrary quantum system: a general formalism," Ann. Phys. (N.Y.) 252, 479-498 (1996).
    [CrossRef]
  16. M. Kira and S. W. Koch, "Quantum-optical spectroscopy of semiconductors," Phys. Rev. A 73, 013813 (2006).
    [CrossRef]
  17. F. Jahnke, M. Kira, and S. W. Koch, "Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities," Z. Phys. B: Condens. Matter 104, 559-572 (1997).
    [CrossRef]
  18. N. H. Kwong, M. Bonitz, R. Binder, and H. S. Kohler, "Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells," Phys. Status Solidi B 206, 197-203 (1998).
    [CrossRef]
  19. M. Kira, F. Jahnke, and S. W. Koch, "Microscopic theory of excitonic signatures in semiconductor photoluminescence," Phys. Rev. Lett. 81, 3263-3266 (1998).
    [CrossRef]
  20. S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
    [CrossRef] [PubMed]
  21. M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in MQW-Bragg structures," Phys. Rev. B 74, 155315 (2006).
    [CrossRef]
  22. X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, "Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells," Solid State Commun. 108, 857-861 (1998).
    [CrossRef]
  23. The least-squares polynomial fit has been performed for [B(ne)]−1, which is a first-order polynomial in carrier density ne.

2006 (4)

M. Kira and S. W. Koch, "Many-body correlations and excitonic effects in semiconductor spectroscopy," Prog. Quantum Electron. 30, 155-196 (2006).
[CrossRef]

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, "Semiconductor excitons in new light," Nat. Mater. 5, 523-531 (2006).
[CrossRef] [PubMed]

M. Kira and S. W. Koch, "Quantum-optical spectroscopy of semiconductors," Phys. Rev. A 73, 013813 (2006).
[CrossRef]

M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in MQW-Bragg structures," Phys. Rev. B 74, 155315 (2006).
[CrossRef]

2005 (2)

J. Hader, J. V. Moloney, and S. W. Koch, "Supression of carrier recombination in semiconductor lasers by phase-space filling," Appl. Phys. Lett. 87, 201112 (2005).
[CrossRef]

J. Hader, J. V. Moloney, and S. W. Koch, "Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers," IEEE J. Quantum Electron. 41, 1217-1226 (2005).
[CrossRef]

2004 (2)

A. D. Andreev and E. P. O'Reilly, "Theoretical study of Auger recombination in a GaInNAs 1.3 μm quantum well structure," Appl. Phys. Lett. 84, 1826-1828 (2004).
[CrossRef]

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

2003 (1)

W. Hoyer, M. Kira, and S. W. Koch, "Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures," Phys. Rev. B 67, 155113 (2003).
[CrossRef]

1999 (2)

M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures," Prog. Quantum Electron. 23, 189-279 (1999).
[CrossRef]

W. Chow, M. Kira, and S. W. Koch, "Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells," Phys. Rev. B 60, 1947-1952 (1999).
[CrossRef]

1998 (4)

L. Banyai, Q. T. Vu, B. Mieck, and H. Haug, "Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering," Phys. Rev. Lett. 81, 882-885 (1998).
[CrossRef]

N. H. Kwong, M. Bonitz, R. Binder, and H. S. Kohler, "Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells," Phys. Status Solidi B 206, 197-203 (1998).
[CrossRef]

M. Kira, F. Jahnke, and S. W. Koch, "Microscopic theory of excitonic signatures in semiconductor photoluminescence," Phys. Rev. Lett. 81, 3263-3266 (1998).
[CrossRef]

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, "Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells," Solid State Commun. 108, 857-861 (1998).
[CrossRef]

1997 (1)

F. Jahnke, M. Kira, and S. W. Koch, "Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities," Z. Phys. B: Condens. Matter 104, 559-572 (1997).
[CrossRef]

1996 (2)

J. Fricke, "Transport equations including many-particle correlations for an arbitrary quantum system: a general formalism," Ann. Phys. (N.Y.) 252, 479-498 (1996).
[CrossRef]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

1995 (1)

J. Schilp, T. Kuhn, and G. Mahler, "Quantum kinetics of the coupled carrier phonon system in photoexcited semiconductors," Phys. Status Solidi B 188, 417-424 (1995).
[CrossRef]

Andreev, A. D.

A. D. Andreev and E. P. O'Reilly, "Theoretical study of Auger recombination in a GaInNAs 1.3 μm quantum well structure," Appl. Phys. Lett. 84, 1826-1828 (2004).
[CrossRef]

Banyai, L.

L. Banyai, Q. T. Vu, B. Mieck, and H. Haug, "Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering," Phys. Rev. Lett. 81, 882-885 (1998).
[CrossRef]

Berger, J. D.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

Binder, R.

N. H. Kwong, M. Bonitz, R. Binder, and H. S. Kohler, "Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells," Phys. Status Solidi B 206, 197-203 (1998).
[CrossRef]

Bonitz, M.

N. H. Kwong, M. Bonitz, R. Binder, and H. S. Kohler, "Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells," Phys. Status Solidi B 206, 197-203 (1998).
[CrossRef]

Chatterjee, S.

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

Chow, W.

W. Chow, M. Kira, and S. W. Koch, "Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells," Phys. Rev. B 60, 1947-1952 (1999).
[CrossRef]

Chow, W. W.

W. W. Chow and S. W. Koch, Semiconductor Laser Fundamentals, 1st ed. (Springer-Verlag, 1999).

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons & Atoms, 3rd ed. (Wiley, 1989).

Cunningham, J. E.

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, "Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells," Solid State Commun. 108, 857-861 (1998).
[CrossRef]

Dupont-Roc, J.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons & Atoms, 3rd ed. (Wiley, 1989).

Ell, C.

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

Fan, X.

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, "Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells," Solid State Commun. 108, 857-861 (1998).
[CrossRef]

Fricke, J.

J. Fricke, "Transport equations including many-particle correlations for an arbitrary quantum system: a general formalism," Ann. Phys. (N.Y.) 252, 479-498 (1996).
[CrossRef]

Gibbs, H. M.

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, "Semiconductor excitons in new light," Nat. Mater. 5, 523-531 (2006).
[CrossRef] [PubMed]

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

Grynberg, G.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons & Atoms, 3rd ed. (Wiley, 1989).

Hader, J.

J. Hader, J. V. Moloney, and S. W. Koch, "Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers," IEEE J. Quantum Electron. 41, 1217-1226 (2005).
[CrossRef]

J. Hader, J. V. Moloney, and S. W. Koch, "Supression of carrier recombination in semiconductor lasers by phase-space filling," Appl. Phys. Lett. 87, 201112 (2005).
[CrossRef]

Haug, H.

L. Banyai, Q. T. Vu, B. Mieck, and H. Haug, "Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering," Phys. Rev. Lett. 81, 882-885 (1998).
[CrossRef]

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, 2004).

Hoyer, W.

M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in MQW-Bragg structures," Phys. Rev. B 74, 155315 (2006).
[CrossRef]

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

W. Hoyer, M. Kira, and S. W. Koch, "Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures," Phys. Rev. B 67, 155113 (2003).
[CrossRef]

M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures," Prog. Quantum Electron. 23, 189-279 (1999).
[CrossRef]

Jahnke, F.

M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures," Prog. Quantum Electron. 23, 189-279 (1999).
[CrossRef]

M. Kira, F. Jahnke, and S. W. Koch, "Microscopic theory of excitonic signatures in semiconductor photoluminescence," Phys. Rev. Lett. 81, 3263-3266 (1998).
[CrossRef]

F. Jahnke, M. Kira, and S. W. Koch, "Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities," Z. Phys. B: Condens. Matter 104, 559-572 (1997).
[CrossRef]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

Khitrova, G.

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, "Semiconductor excitons in new light," Nat. Mater. 5, 523-531 (2006).
[CrossRef] [PubMed]

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

Kira, M.

M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in MQW-Bragg structures," Phys. Rev. B 74, 155315 (2006).
[CrossRef]

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, "Semiconductor excitons in new light," Nat. Mater. 5, 523-531 (2006).
[CrossRef] [PubMed]

M. Kira and S. W. Koch, "Quantum-optical spectroscopy of semiconductors," Phys. Rev. A 73, 013813 (2006).
[CrossRef]

M. Kira and S. W. Koch, "Many-body correlations and excitonic effects in semiconductor spectroscopy," Prog. Quantum Electron. 30, 155-196 (2006).
[CrossRef]

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

W. Hoyer, M. Kira, and S. W. Koch, "Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures," Phys. Rev. B 67, 155113 (2003).
[CrossRef]

W. Chow, M. Kira, and S. W. Koch, "Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells," Phys. Rev. B 60, 1947-1952 (1999).
[CrossRef]

M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures," Prog. Quantum Electron. 23, 189-279 (1999).
[CrossRef]

M. Kira, F. Jahnke, and S. W. Koch, "Microscopic theory of excitonic signatures in semiconductor photoluminescence," Phys. Rev. Lett. 81, 3263-3266 (1998).
[CrossRef]

F. Jahnke, M. Kira, and S. W. Koch, "Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities," Z. Phys. B: Condens. Matter 104, 559-572 (1997).
[CrossRef]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

Koch, S. W.

M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in MQW-Bragg structures," Phys. Rev. B 74, 155315 (2006).
[CrossRef]

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, "Semiconductor excitons in new light," Nat. Mater. 5, 523-531 (2006).
[CrossRef] [PubMed]

M. Kira and S. W. Koch, "Quantum-optical spectroscopy of semiconductors," Phys. Rev. A 73, 013813 (2006).
[CrossRef]

M. Kira and S. W. Koch, "Many-body correlations and excitonic effects in semiconductor spectroscopy," Prog. Quantum Electron. 30, 155-196 (2006).
[CrossRef]

J. Hader, J. V. Moloney, and S. W. Koch, "Supression of carrier recombination in semiconductor lasers by phase-space filling," Appl. Phys. Lett. 87, 201112 (2005).
[CrossRef]

J. Hader, J. V. Moloney, and S. W. Koch, "Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers," IEEE J. Quantum Electron. 41, 1217-1226 (2005).
[CrossRef]

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

W. Hoyer, M. Kira, and S. W. Koch, "Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures," Phys. Rev. B 67, 155113 (2003).
[CrossRef]

W. Chow, M. Kira, and S. W. Koch, "Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells," Phys. Rev. B 60, 1947-1952 (1999).
[CrossRef]

M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures," Prog. Quantum Electron. 23, 189-279 (1999).
[CrossRef]

M. Kira, F. Jahnke, and S. W. Koch, "Microscopic theory of excitonic signatures in semiconductor photoluminescence," Phys. Rev. Lett. 81, 3263-3266 (1998).
[CrossRef]

F. Jahnke, M. Kira, and S. W. Koch, "Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities," Z. Phys. B: Condens. Matter 104, 559-572 (1997).
[CrossRef]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, 2004).

W. W. Chow and S. W. Koch, Semiconductor Laser Fundamentals, 1st ed. (Springer-Verlag, 1999).

Kohler, H. S.

N. H. Kwong, M. Bonitz, R. Binder, and H. S. Kohler, "Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells," Phys. Status Solidi B 206, 197-203 (1998).
[CrossRef]

Kuhn, T.

J. Schilp, T. Kuhn, and G. Mahler, "Quantum kinetics of the coupled carrier phonon system in photoexcited semiconductors," Phys. Status Solidi B 188, 417-424 (1995).
[CrossRef]

Kwong, N. H.

N. H. Kwong, M. Bonitz, R. Binder, and H. S. Kohler, "Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells," Phys. Status Solidi B 206, 197-203 (1998).
[CrossRef]

Lindmark, E. K.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

Lyngnes, O.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

Mahler, G.

J. Schilp, T. Kuhn, and G. Mahler, "Quantum kinetics of the coupled carrier phonon system in photoexcited semiconductors," Phys. Status Solidi B 188, 417-424 (1995).
[CrossRef]

Mieck, B.

L. Banyai, Q. T. Vu, B. Mieck, and H. Haug, "Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering," Phys. Rev. Lett. 81, 882-885 (1998).
[CrossRef]

Moloney, J. V.

J. Hader, J. V. Moloney, and S. W. Koch, "Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers," IEEE J. Quantum Electron. 41, 1217-1226 (2005).
[CrossRef]

J. Hader, J. V. Moloney, and S. W. Koch, "Supression of carrier recombination in semiconductor lasers by phase-space filling," Appl. Phys. Lett. 87, 201112 (2005).
[CrossRef]

Mosor, S.

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

Nelson, T. R.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

O'Reilly, E. P.

A. D. Andreev and E. P. O'Reilly, "Theoretical study of Auger recombination in a GaInNAs 1.3 μm quantum well structure," Appl. Phys. Lett. 84, 1826-1828 (2004).
[CrossRef]

Prineas, J.

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

Schäfer, M.

M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in MQW-Bragg structures," Phys. Rev. B 74, 155315 (2006).
[CrossRef]

Schilp, J.

J. Schilp, T. Kuhn, and G. Mahler, "Quantum kinetics of the coupled carrier phonon system in photoexcited semiconductors," Phys. Status Solidi B 188, 417-424 (1995).
[CrossRef]

Stolz, H.

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

Tai, K.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

Takagahara, T.

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, "Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells," Solid State Commun. 108, 857-861 (1998).
[CrossRef]

Vu, Q. T.

L. Banyai, Q. T. Vu, B. Mieck, and H. Haug, "Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering," Phys. Rev. Lett. 81, 882-885 (1998).
[CrossRef]

Wang, H.

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, "Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells," Solid State Commun. 108, 857-861 (1998).
[CrossRef]

Werchner, M.

M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in MQW-Bragg structures," Phys. Rev. B 74, 155315 (2006).
[CrossRef]

Wick, D. V.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

Ann. Phys. (N.Y.) (1)

J. Fricke, "Transport equations including many-particle correlations for an arbitrary quantum system: a general formalism," Ann. Phys. (N.Y.) 252, 479-498 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

J. Hader, J. V. Moloney, and S. W. Koch, "Supression of carrier recombination in semiconductor lasers by phase-space filling," Appl. Phys. Lett. 87, 201112 (2005).
[CrossRef]

A. D. Andreev and E. P. O'Reilly, "Theoretical study of Auger recombination in a GaInNAs 1.3 μm quantum well structure," Appl. Phys. Lett. 84, 1826-1828 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Hader, J. V. Moloney, and S. W. Koch, "Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers," IEEE J. Quantum Electron. 41, 1217-1226 (2005).
[CrossRef]

Nat. Mater. (1)

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, "Semiconductor excitons in new light," Nat. Mater. 5, 523-531 (2006).
[CrossRef] [PubMed]

Phys. Rev. A (1)

M. Kira and S. W. Koch, "Quantum-optical spectroscopy of semiconductors," Phys. Rev. A 73, 013813 (2006).
[CrossRef]

Phys. Rev. B (3)

W. Hoyer, M. Kira, and S. W. Koch, "Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures," Phys. Rev. B 67, 155113 (2003).
[CrossRef]

W. Chow, M. Kira, and S. W. Koch, "Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells," Phys. Rev. B 60, 1947-1952 (1999).
[CrossRef]

M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in MQW-Bragg structures," Phys. Rev. B 74, 155315 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996).
[CrossRef] [PubMed]

L. Banyai, Q. T. Vu, B. Mieck, and H. Haug, "Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering," Phys. Rev. Lett. 81, 882-885 (1998).
[CrossRef]

M. Kira, F. Jahnke, and S. W. Koch, "Microscopic theory of excitonic signatures in semiconductor photoluminescence," Phys. Rev. Lett. 81, 3263-3266 (1998).
[CrossRef]

S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004).
[CrossRef] [PubMed]

Phys. Status Solidi B (2)

J. Schilp, T. Kuhn, and G. Mahler, "Quantum kinetics of the coupled carrier phonon system in photoexcited semiconductors," Phys. Status Solidi B 188, 417-424 (1995).
[CrossRef]

N. H. Kwong, M. Bonitz, R. Binder, and H. S. Kohler, "Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells," Phys. Status Solidi B 206, 197-203 (1998).
[CrossRef]

Prog. Quantum Electron. (2)

M. Kira and S. W. Koch, "Many-body correlations and excitonic effects in semiconductor spectroscopy," Prog. Quantum Electron. 30, 155-196 (2006).
[CrossRef]

M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures," Prog. Quantum Electron. 23, 189-279 (1999).
[CrossRef]

Solid State Commun. (1)

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, "Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells," Solid State Commun. 108, 857-861 (1998).
[CrossRef]

Z. Phys. B: Condens. Matter (1)

F. Jahnke, M. Kira, and S. W. Koch, "Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities," Z. Phys. B: Condens. Matter 104, 559-572 (1997).
[CrossRef]

Other (4)

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons & Atoms, 3rd ed. (Wiley, 1989).

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, 2004).

W. W. Chow and S. W. Koch, Semiconductor Laser Fundamentals, 1st ed. (Springer-Verlag, 1999).

The least-squares polynomial fit has been performed for [B(ne)]−1, which is a first-order polynomial in carrier density ne.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectra for densities n = 5 × 10 10 cm 2 (shaded area), n = 2 × 10 11 cm 2 (solid curve), n = 5 × 10 11 cm 2 (dashed curve), n = 1 × 10 12 cm 2 (dotted curve), n = 1.4 × 10 12 cm 2 (dash-dotted curve), and corresponding phase-space filling factors 1 f k e f k h (inset).

Fig. 2
Fig. 2

Sequence of PL spectra normalized by a carrier density for the same densities as in Fig. 1.

Fig. 3
Fig. 3

PL spectra for n = 5 × 10 10 cm 2 (a), (c) and n = 1.4 × 10 12 cm 2 (b), (d) with and without Coulomb interaction. Each frame compares the full result (solid curve) to the free-carrier spectrum (shaded area), which is additionally shifted (dashed curve) and scaled (dotted curve) in order to match the peak of the full result. The values of γ free for the free-carrier computations are chosen to match the low-energy tail (top frames) or continuum emission (low frames), respectively.

Fig. 4
Fig. 4

Half-width at half maximum of low-energy tail of PL spectra (solid squares) are compared with E 1 s (dashed curve) and with γ free entering the free-carrier spectra (dashed–dotted curve). The vertical line indicates the transparency point. The thin solid curve is a fit proportional to n 0.55 .

Fig. 5
Fig. 5

Density-dependent coefficient B ( n ) = ( d n d t ) n 2 for full result (solid squares) and free-carrier result (open squares). The solid and dashed curves provide fits discussed in the main text. The vertical line indicates the transparency point.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

H 0 = λ , k ϵ k λ a λ , k a λ , k .
H C = 1 2 λ , λ k , k , k V k a λ , k a λ k a λ , k + k a λ , k k .
E ( r ) = q , σ i E q u q , σ ( r ) b q , σ + H.c. ,
H L = σ , q ω q ( b q , σ b q , σ + 1 2 ) .
H D = σ , q , k i E q u ¯ q , σ * d c v * b q , σ a v , k a c , k + q + H.c. ,
i t O = [ O , H tot ] .
a v a λ a λ a c = a v a c a λ a λ a v a λ a λ a c + Δ a v a λ a λ a c .
I PL ( q , σ ) = t Δ b q , σ b q , σ = 2 Re [ F q , σ * k Π k , q , q z , σ ] ,
i t Π k , q , q z , σ = ( ϵ ̃ k , q ω q ) Π k , q , q z , σ [ 1 f k + q e f k h ] k V k k Π k , q , q z , σ + F q , σ [ f k + q e f k h + k c X q , k , k ] Ω ST ( k , q , q z , σ ) i T k , q , q z , σ Π .
ϵ ̃ k , q = ϵ k + q c ϵ k v k V k k [ f k + q e + f k h ]
T k , q , q z , σ Π = i λ , k p 0 V p [ Δ b q , q z , σ a v , k a λ , k a λ , k + p a c , k p + q Δ b q , q z , σ a v , k + p a λ , k a λ , k + p a c , k + q ] ,
i t Δ b a v a λ a λ a c = ( ϵ ̃ ω q ) Δ b a v a λ a λ a c + W [ f ( 1 f ) ( 1 f ) + ( 1 f ) f f ] Π ,
i t Π k , q , q z , σ = ( ϵ ̃ k , q = 0 ω q i γ phon ) Π k , q , q z , σ [ 1 f k e f k h ] k V k k Π k , q , q z , σ i k Γ k , k ( ω q ) Π k , q , q z , σ + F q , σ [ f k e f k h + k c X q = 0 , k , k ] .
0 = ( ϵ ̃ k ω i γ phon ) P k ( ω ) [ 1 f k e f k h ] k V k k P k ( ω ) i k Γ k , k ( ω ) P k ( ω ) d c v * E QW ( ω ) ,
χ ( ω ) = P QW ( ω ) ε 0 E QW ( ω ) ,
P QW ( ω ) = k d c v * P k ( ω ) .
k M k , k ( ω ) φ ν R ( k , ω ) = ϵ ν ( ω ) φ ν R ( k , ω ) ,
k ( φ ν L ( k , ω ) ) * M k , k ( ω ) = ϵ ν ( ω ) ( φ ν L ( k , ω ) ) * ,
M k , k ( ω ) = [ ϵ k c ϵ k v k V k k ( f k e + f k h ) ω ] δ k , k ( 1 f k e f k h ) V k k i Γ k , k ( ω ) .
α ( ω ) = ω n c 0 Im [ χ ( ω ) ] = ω d c v 2 n ε 0 c 0 Im [ ν , μ φ ν R ( r = 0 , ω ) ( φ μ R ( r = 0 , ω ) ) * E ν ( ω ) ω i Γ ν ( ω ) A ν , μ ( ω ) ] ,
I PL ( q , σ ) = ω q d c v ϵ q , σ 2 n 2 ε 0 L Im [ ν , μ φ ν R ( r = 0 , ω q ) ( φ μ R ( r = 0 , ω q ) ) * E ν ( ω q ) ω q i Γ ν ( ω q ) S ν , μ ( ω q ) ] ,
A ν , μ ( ω ) = k ( φ ν L ( k , ω ) ) * ( 1 f k e f k h ) φ μ L ( k , ω ) ,
S ν , μ ( ω ) = k ( φ ν L ( k , ω ) ) * ( f k e f k h + k c X 0 , k , k ) φ μ L ( k , ω ) ,
f k λ = [ e β ( ε k λ μ λ ) + 1 ] 1 ,
[ i t c X 0 , k , k ] plasma = ϵ X 0 , k , k c X 0 , k , k + V k k [ ( 1 f k e ) ( 1 f k h ) f k e f k h f k e f k h ( 1 f k e ) ( 1 f k h ) ] + ( 1 f k e f k h ) k V k k c X 0 , k , k ( 1 f k e f k h ) k V k k c X 0 , k , k i k [ Γ k , k X ] * c X 0 , k , k i k Γ k , k X c X 0 , k , k .
1 S q , σ I PL ( q , σ ) = t ( 1 S k f k λ ) = n λ t
I PL ( q , σ ) = 1 L c 0 n d c v ϵ q , σ 2 d c v 2 I PL 0 ( ω q ) ,
I PL 0 ( ω ) = ω d c v 2 n c 0 ε 0 Im [ ν , μ φ ν R ( r = 0 , ω ) ( φ μ R ( r = 0 , ω ) ) * E ν ( ω ) ω i Γ ν ( ω ) S ν , μ ( ω ) ] ,
1 S q , σ I PL ( q , σ ) = 1 8 π 3 ( 1 + cos 2 ( θ q ) ) I PL 0 ( ω q ) c 0 n d 3 q = 2 3 π 2 n 2 c 0 2 I PL 0 ( ω ) ω 2 d ω .
d n e d t = A n e B n e 2 C n e 3 ,
d n e d t rad = B ( n e ) n e 2 ,
d n e d t = 1 τ n e 2 n e + n 0 ,

Metrics