Abstract

We report nonstationary photorefractive holograms in absorbing Bi12TiO20 samples with different degrees of hole-electron competition exhibiting resonance peaks due to electron and hole charge carriers. One sample with moderate hole-electron competition and another with a much larger effect were studied. Experimental data from these samples were analyzed using a theoretical model accounting for electrical hole-electron coupling, wave coupling, and response-time variation along the sample thickness due to bulk light absorption. Comparing experimental data and theoretical results allows finding out material parameters adequately describing hole and electron photoactive centers in these samples.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, "Running holograms in photorefractive Bi2TiO20 crystals," Opt. Commun. 44, 19-23 (1982).
    [CrossRef]
  2. S. Stepanov and P. Petrov, Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics Series, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 1988), Chap. 9, pp. 263-289.
  3. I. de Oliveira and J. Frejlich, "Photorefractive running hologram for materials characterization," J. Opt. Soc. Am. B 18, 291-297 (2001).
    [CrossRef]
  4. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, "Hole-electron competition in photorefractive gratings," Opt. Lett. 11, 312-314 (1986).
    [CrossRef] [PubMed]
  5. G. C. Valley, "Simultaneous electron/hole transport in photorefractive materials," J. Appl. Phys. 59, 3363-3366 (1986).
    [CrossRef]
  6. F. P. Strohkendl and R. W. Hellwarth, "Contribution of holes to the photorefractive effect in n-type Bi12SiO20," J. Appl. Phys. 62, 2450-2455 (1987).
    [CrossRef]
  7. G. Pauliat, M. Allain, J. C. Launay, and G. Roosen, "Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals," Opt. Commun. 61, 321-324 (1987).
    [CrossRef]
  8. S. Zhivkova and M. Miteva, "Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers," J. Appl. Phys. 68, 3099-3103 (1990).
    [CrossRef]
  9. J. Frejlich, "Fringe-locked running hologram and multiple photoactive species in Bi12TiO20," J. Appl. Phys. 68, 3104-3109 (1990).
    [CrossRef]
  10. J. Frejlich and P. M. Garcia, "Quasipermanent hole-photorefractive and photochromic effects in Bi12TiO20 crystals," Appl. Phys. A: Solids Surf. 55, 49-54 (1992).
    [CrossRef]
  11. P. Xia, J. Jonathan, J. Partanen, and R. Hellwarth, "Measurement of the complex polarizability of electron traps in Bi12SiO20 by a moving-grating technique," Opt. Lett. 18, 1780-1782 (1993).
    [CrossRef] [PubMed]
  12. M. Imlau, K. Bastwöste, S. Möller, and U. Voelker, "Dispersion of the electronoptic properties of cerium-doped Sr0.61Ba0.39Nb2O6," J. Appl. Phys. 100, 053110-1-053110-6 (2006).
    [CrossRef]
  13. P. dos Santos, J. Carvalho, and J. Frejlich, "Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20," Appl. Phys. B: Photophys. Laser Chem. 81, 651-655 (2005).
    [CrossRef]
  14. G. Brost, K. M. Magde, J. J. Larkin, and M. T. Harris, "Modulation dependence of the photorefractive response with moving gratings: numerical analysis and experiment," J. Opt. Soc. Am. B 11, 1764-1772 (1994).
    [CrossRef]
  15. S. L. Sochava, E. V. Mokrushina, V. V. Prokofiev, and S. I. Stepanov, "Experimental comparison of the ac field and the moving-grating holographic-recording techniques for Bi12SiO20 and Bi12TiO20 crystals," J. Opt. Soc. Am. B 10, 1600-1604 (1993).
    [CrossRef]
  16. E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, "Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics," Opt. Commun. 141, 132-136 (1997).
    [CrossRef]
  17. B. Imbert, H. Rajbenbach, S. Mallick, J. Herriau, and J. Huignard, "High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals," Opt. Lett. 13, 327-329 (1988).
    [CrossRef] [PubMed]
  18. J. Ma, Y. Taketomi, Y. Fainman, J. E. Ford, S. H. Lee, and K. Chino, "Moving grating and dc external field in photorefractive GaP at 633 nm," Opt. Lett. 16, 1080-1082 (1991).
    [CrossRef] [PubMed]
  19. J. Kumar, G. Albanese, and W. Steier, "Measurement of two-wave mixing gain in GaAs with a moving grating," Opt. Commun. 63, 191-193 (1987).
    [CrossRef]
  20. I. Aubrecht, H. Ellin, A. Grunnet-Jepsen, and L. Solymar, "Space-charge field in photorefractive materials enhanced by moving fringes: comparison of hole-electron transport models," J. Opt. Soc. Am. B 12, 1918-1923 (1995).
    [CrossRef]
  21. I. de Oliveira and J. Frejlich, "Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals," in Photorefractive Effects, Materials and Devices, G.J.Salamo, A.Siahmakoun, D.D.Nolte, and S.Stepanov, eds., Vol. 62 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 237-245.
  22. G. Brost, J. Norman, S. Odoulov, K. Shcherbin, A. Shumelyuk, and V. Taranov, "Gain spectra of beam coupling in photorefractive semiconductors," J. Opt. Soc. Am. B 15, 2083-2090 (1998).
    [CrossRef]
  23. P. D. Foote and T. J. Hall, "Influence of optical activity on two beam coupling constants in photorefractive Bi12SiO20," Opt. Commun. 57, 201-206 (1986).
    [CrossRef]
  24. J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, "Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials," J. Opt. Soc. Am. B 14, 1741-1749 (1997).
    [CrossRef]
  25. I. de Oliveira and J. Frejlich, "Dielectric relaxation time measurement in absorbing photorefractive materials," Opt. Commun. 178, 251-255 (2000).
    [CrossRef]
  26. D. J. Webb and L. Solymar, "The effects of optical activity and absorption on two-wave mixing in Bi12SiO20," Opt. Commun. 83, 287-294 (1991).
    [CrossRef]
  27. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006).
  28. S. Mallick and D. Rouède, "Influence of the polarization direction on the two-beam coupling in photorefractive Bi12SiO20: diffusion regime," Appl. Phys. B: Photophys. Laser Chem. 43, 239-245 (1987).
    [CrossRef]
  29. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam-coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
    [CrossRef]
  30. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949-964 (1979).
    [CrossRef]
  31. A. A. Freschi, P. M. Garcia, and J. Frejlich, "Charge-carriers diffusion length in photorefractive crystals computed from the initial hologram phase shift," Appl. Phys. Lett. 71, 2427-2429 (1997).
    [CrossRef]
  32. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006), Chap. 9.
  33. M. Barbosa and J. Frejlich, "Photorefractive fringe-locked running hologram analysis in the 3-dimensional space," J. Opt. A, Pure Appl. Opt. 5, S416-S419 (2003).
    [CrossRef]

2006

M. Imlau, K. Bastwöste, S. Möller, and U. Voelker, "Dispersion of the electronoptic properties of cerium-doped Sr0.61Ba0.39Nb2O6," J. Appl. Phys. 100, 053110-1-053110-6 (2006).
[CrossRef]

2005

P. dos Santos, J. Carvalho, and J. Frejlich, "Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20," Appl. Phys. B: Photophys. Laser Chem. 81, 651-655 (2005).
[CrossRef]

2003

M. Barbosa and J. Frejlich, "Photorefractive fringe-locked running hologram analysis in the 3-dimensional space," J. Opt. A, Pure Appl. Opt. 5, S416-S419 (2003).
[CrossRef]

2001

2000

I. de Oliveira and J. Frejlich, "Dielectric relaxation time measurement in absorbing photorefractive materials," Opt. Commun. 178, 251-255 (2000).
[CrossRef]

1998

1997

J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, "Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials," J. Opt. Soc. Am. B 14, 1741-1749 (1997).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, "Charge-carriers diffusion length in photorefractive crystals computed from the initial hologram phase shift," Appl. Phys. Lett. 71, 2427-2429 (1997).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, "Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics," Opt. Commun. 141, 132-136 (1997).
[CrossRef]

1995

1994

1993

1992

J. Frejlich and P. M. Garcia, "Quasipermanent hole-photorefractive and photochromic effects in Bi12TiO20 crystals," Appl. Phys. A: Solids Surf. 55, 49-54 (1992).
[CrossRef]

1991

J. Ma, Y. Taketomi, Y. Fainman, J. E. Ford, S. H. Lee, and K. Chino, "Moving grating and dc external field in photorefractive GaP at 633 nm," Opt. Lett. 16, 1080-1082 (1991).
[CrossRef] [PubMed]

D. J. Webb and L. Solymar, "The effects of optical activity and absorption on two-wave mixing in Bi12SiO20," Opt. Commun. 83, 287-294 (1991).
[CrossRef]

1990

S. Zhivkova and M. Miteva, "Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers," J. Appl. Phys. 68, 3099-3103 (1990).
[CrossRef]

J. Frejlich, "Fringe-locked running hologram and multiple photoactive species in Bi12TiO20," J. Appl. Phys. 68, 3104-3109 (1990).
[CrossRef]

1988

1987

J. Kumar, G. Albanese, and W. Steier, "Measurement of two-wave mixing gain in GaAs with a moving grating," Opt. Commun. 63, 191-193 (1987).
[CrossRef]

F. P. Strohkendl and R. W. Hellwarth, "Contribution of holes to the photorefractive effect in n-type Bi12SiO20," J. Appl. Phys. 62, 2450-2455 (1987).
[CrossRef]

G. Pauliat, M. Allain, J. C. Launay, and G. Roosen, "Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals," Opt. Commun. 61, 321-324 (1987).
[CrossRef]

S. Mallick and D. Rouède, "Influence of the polarization direction on the two-beam coupling in photorefractive Bi12SiO20: diffusion regime," Appl. Phys. B: Photophys. Laser Chem. 43, 239-245 (1987).
[CrossRef]

1986

P. D. Foote and T. J. Hall, "Influence of optical activity on two beam coupling constants in photorefractive Bi12SiO20," Opt. Commun. 57, 201-206 (1986).
[CrossRef]

F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, "Hole-electron competition in photorefractive gratings," Opt. Lett. 11, 312-314 (1986).
[CrossRef] [PubMed]

G. C. Valley, "Simultaneous electron/hole transport in photorefractive materials," J. Appl. Phys. 59, 3363-3366 (1986).
[CrossRef]

1982

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, "Running holograms in photorefractive Bi2TiO20 crystals," Opt. Commun. 44, 19-23 (1982).
[CrossRef]

1979

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam-coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949-964 (1979).
[CrossRef]

Albanese, G.

J. Kumar, G. Albanese, and W. Steier, "Measurement of two-wave mixing gain in GaAs with a moving grating," Opt. Commun. 63, 191-193 (1987).
[CrossRef]

Allain, M.

G. Pauliat, M. Allain, J. C. Launay, and G. Roosen, "Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals," Opt. Commun. 61, 321-324 (1987).
[CrossRef]

Aubrecht, I.

Barbosa, M.

M. Barbosa and J. Frejlich, "Photorefractive fringe-locked running hologram analysis in the 3-dimensional space," J. Opt. A, Pure Appl. Opt. 5, S416-S419 (2003).
[CrossRef]

Bastwöste, K.

M. Imlau, K. Bastwöste, S. Möller, and U. Voelker, "Dispersion of the electronoptic properties of cerium-doped Sr0.61Ba0.39Nb2O6," J. Appl. Phys. 100, 053110-1-053110-6 (2006).
[CrossRef]

Brost, G.

Carvalho, J.

P. dos Santos, J. Carvalho, and J. Frejlich, "Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20," Appl. Phys. B: Photophys. Laser Chem. 81, 651-655 (2005).
[CrossRef]

Chino, K.

de Oliveira, I.

I. de Oliveira and J. Frejlich, "Photorefractive running hologram for materials characterization," J. Opt. Soc. Am. B 18, 291-297 (2001).
[CrossRef]

I. de Oliveira and J. Frejlich, "Dielectric relaxation time measurement in absorbing photorefractive materials," Opt. Commun. 178, 251-255 (2000).
[CrossRef]

I. de Oliveira and J. Frejlich, "Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals," in Photorefractive Effects, Materials and Devices, G.J.Salamo, A.Siahmakoun, D.D.Nolte, and S.Stepanov, eds., Vol. 62 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 237-245.

dos Santos, P.

P. dos Santos, J. Carvalho, and J. Frejlich, "Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20," Appl. Phys. B: Photophys. Laser Chem. 81, 651-655 (2005).
[CrossRef]

Ellin, H.

Fainman, Y.

Foote, P. D.

P. D. Foote and T. J. Hall, "Influence of optical activity on two beam coupling constants in photorefractive Bi12SiO20," Opt. Commun. 57, 201-206 (1986).
[CrossRef]

Ford, J. E.

Frejlich, J.

P. dos Santos, J. Carvalho, and J. Frejlich, "Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20," Appl. Phys. B: Photophys. Laser Chem. 81, 651-655 (2005).
[CrossRef]

M. Barbosa and J. Frejlich, "Photorefractive fringe-locked running hologram analysis in the 3-dimensional space," J. Opt. A, Pure Appl. Opt. 5, S416-S419 (2003).
[CrossRef]

I. de Oliveira and J. Frejlich, "Photorefractive running hologram for materials characterization," J. Opt. Soc. Am. B 18, 291-297 (2001).
[CrossRef]

I. de Oliveira and J. Frejlich, "Dielectric relaxation time measurement in absorbing photorefractive materials," Opt. Commun. 178, 251-255 (2000).
[CrossRef]

J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, "Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials," J. Opt. Soc. Am. B 14, 1741-1749 (1997).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, "Charge-carriers diffusion length in photorefractive crystals computed from the initial hologram phase shift," Appl. Phys. Lett. 71, 2427-2429 (1997).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, "Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics," Opt. Commun. 141, 132-136 (1997).
[CrossRef]

J. Frejlich and P. M. Garcia, "Quasipermanent hole-photorefractive and photochromic effects in Bi12TiO20 crystals," Appl. Phys. A: Solids Surf. 55, 49-54 (1992).
[CrossRef]

J. Frejlich, "Fringe-locked running hologram and multiple photoactive species in Bi12TiO20," J. Appl. Phys. 68, 3104-3109 (1990).
[CrossRef]

I. de Oliveira and J. Frejlich, "Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals," in Photorefractive Effects, Materials and Devices, G.J.Salamo, A.Siahmakoun, D.D.Nolte, and S.Stepanov, eds., Vol. 62 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 237-245.

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006), Chap. 9.

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006).

Freschi, A. A.

A. A. Freschi, P. M. Garcia, and J. Frejlich, "Charge-carriers diffusion length in photorefractive crystals computed from the initial hologram phase shift," Appl. Phys. Lett. 71, 2427-2429 (1997).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, "Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics," Opt. Commun. 141, 132-136 (1997).
[CrossRef]

Garcia, P. M.

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, "Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics," Opt. Commun. 141, 132-136 (1997).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, "Charge-carriers diffusion length in photorefractive crystals computed from the initial hologram phase shift," Appl. Phys. Lett. 71, 2427-2429 (1997).
[CrossRef]

J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, "Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials," J. Opt. Soc. Am. B 14, 1741-1749 (1997).
[CrossRef]

J. Frejlich and P. M. Garcia, "Quasipermanent hole-photorefractive and photochromic effects in Bi12TiO20 crystals," Appl. Phys. A: Solids Surf. 55, 49-54 (1992).
[CrossRef]

Grunnet-Jepsen, A.

Hall, T. J.

P. D. Foote and T. J. Hall, "Influence of optical activity on two beam coupling constants in photorefractive Bi12SiO20," Opt. Commun. 57, 201-206 (1986).
[CrossRef]

Harris, M. T.

Hellwarth, R.

Hellwarth, R. W.

F. P. Strohkendl and R. W. Hellwarth, "Contribution of holes to the photorefractive effect in n-type Bi12SiO20," J. Appl. Phys. 62, 2450-2455 (1987).
[CrossRef]

F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, "Hole-electron competition in photorefractive gratings," Opt. Lett. 11, 312-314 (1986).
[CrossRef] [PubMed]

Herriau, J.

Huignard, J.

Imbert, B.

Imlau, M.

M. Imlau, K. Bastwöste, S. Möller, and U. Voelker, "Dispersion of the electronoptic properties of cerium-doped Sr0.61Ba0.39Nb2O6," J. Appl. Phys. 100, 053110-1-053110-6 (2006).
[CrossRef]

Jonathan, J.

Jonathan, J. M. C.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam-coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949-964 (1979).
[CrossRef]

Kulikov, V. V.

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, "Running holograms in photorefractive Bi2TiO20 crystals," Opt. Commun. 44, 19-23 (1982).
[CrossRef]

Kumar, J.

J. Kumar, G. Albanese, and W. Steier, "Measurement of two-wave mixing gain in GaAs with a moving grating," Opt. Commun. 63, 191-193 (1987).
[CrossRef]

Larkin, J. J.

Launay, J. C.

G. Pauliat, M. Allain, J. C. Launay, and G. Roosen, "Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals," Opt. Commun. 61, 321-324 (1987).
[CrossRef]

Lee, S. H.

Ma, J.

Magde, K. M.

Mallick, S.

B. Imbert, H. Rajbenbach, S. Mallick, J. Herriau, and J. Huignard, "High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals," Opt. Lett. 13, 327-329 (1988).
[CrossRef] [PubMed]

S. Mallick and D. Rouède, "Influence of the polarization direction on the two-beam coupling in photorefractive Bi12SiO20: diffusion regime," Appl. Phys. B: Photophys. Laser Chem. 43, 239-245 (1987).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949-964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam-coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
[CrossRef]

Miteva, M.

S. Zhivkova and M. Miteva, "Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers," J. Appl. Phys. 68, 3099-3103 (1990).
[CrossRef]

Mokrushina, E. V.

Möller, S.

M. Imlau, K. Bastwöste, S. Möller, and U. Voelker, "Dispersion of the electronoptic properties of cerium-doped Sr0.61Ba0.39Nb2O6," J. Appl. Phys. 100, 053110-1-053110-6 (2006).
[CrossRef]

Norman, J.

Odoulov, S.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam-coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949-964 (1979).
[CrossRef]

Partanen, J.

Pauliat, G.

G. Pauliat, M. Allain, J. C. Launay, and G. Roosen, "Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals," Opt. Commun. 61, 321-324 (1987).
[CrossRef]

Petrov, M. P.

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, "Running holograms in photorefractive Bi2TiO20 crystals," Opt. Commun. 44, 19-23 (1982).
[CrossRef]

Petrov, P.

S. Stepanov and P. Petrov, Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics Series, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 1988), Chap. 9, pp. 263-289.

Prokofiev, V. V.

Rajbenbach, H.

Ringhofer, K. H.

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, "Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics," Opt. Commun. 141, 132-136 (1997).
[CrossRef]

J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, "Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials," J. Opt. Soc. Am. B 14, 1741-1749 (1997).
[CrossRef]

Roosen, G.

G. Pauliat, M. Allain, J. C. Launay, and G. Roosen, "Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals," Opt. Commun. 61, 321-324 (1987).
[CrossRef]

Rouède, D.

S. Mallick and D. Rouède, "Influence of the polarization direction on the two-beam coupling in photorefractive Bi12SiO20: diffusion regime," Appl. Phys. B: Photophys. Laser Chem. 43, 239-245 (1987).
[CrossRef]

Shamonina, E.

J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, "Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials," J. Opt. Soc. Am. B 14, 1741-1749 (1997).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, "Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics," Opt. Commun. 141, 132-136 (1997).
[CrossRef]

Shcherbin, K.

Shumelyuk, A.

Sochava, S. L.

Solymar, L.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949-964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam-coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
[CrossRef]

Steier, W.

J. Kumar, G. Albanese, and W. Steier, "Measurement of two-wave mixing gain in GaAs with a moving grating," Opt. Commun. 63, 191-193 (1987).
[CrossRef]

Stepanov, S.

S. Stepanov and P. Petrov, Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics Series, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 1988), Chap. 9, pp. 263-289.

Stepanov, S. I.

Strohkendl, F. P.

F. P. Strohkendl and R. W. Hellwarth, "Contribution of holes to the photorefractive effect in n-type Bi12SiO20," J. Appl. Phys. 62, 2450-2455 (1987).
[CrossRef]

F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, "Hole-electron competition in photorefractive gratings," Opt. Lett. 11, 312-314 (1986).
[CrossRef] [PubMed]

Taketomi, Y.

Taranov, V.

Valley, G. C.

G. C. Valley, "Simultaneous electron/hole transport in photorefractive materials," J. Appl. Phys. 59, 3363-3366 (1986).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam-coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949-964 (1979).
[CrossRef]

Voelker, U.

M. Imlau, K. Bastwöste, S. Möller, and U. Voelker, "Dispersion of the electronoptic properties of cerium-doped Sr0.61Ba0.39Nb2O6," J. Appl. Phys. 100, 053110-1-053110-6 (2006).
[CrossRef]

Webb, D. J.

D. J. Webb and L. Solymar, "The effects of optical activity and absorption on two-wave mixing in Bi12SiO20," Opt. Commun. 83, 287-294 (1991).
[CrossRef]

Xia, P.

Zhivkova, S.

S. Zhivkova and M. Miteva, "Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers," J. Appl. Phys. 68, 3099-3103 (1990).
[CrossRef]

Appl. Phys. A: Solids Surf.

J. Frejlich and P. M. Garcia, "Quasipermanent hole-photorefractive and photochromic effects in Bi12TiO20 crystals," Appl. Phys. A: Solids Surf. 55, 49-54 (1992).
[CrossRef]

Appl. Phys. B: Photophys. Laser Chem.

P. dos Santos, J. Carvalho, and J. Frejlich, "Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20," Appl. Phys. B: Photophys. Laser Chem. 81, 651-655 (2005).
[CrossRef]

S. Mallick and D. Rouède, "Influence of the polarization direction on the two-beam coupling in photorefractive Bi12SiO20: diffusion regime," Appl. Phys. B: Photophys. Laser Chem. 43, 239-245 (1987).
[CrossRef]

Appl. Phys. Lett.

A. A. Freschi, P. M. Garcia, and J. Frejlich, "Charge-carriers diffusion length in photorefractive crystals computed from the initial hologram phase shift," Appl. Phys. Lett. 71, 2427-2429 (1997).
[CrossRef]

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam-coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949-964 (1979).
[CrossRef]

J. Appl. Phys.

M. Imlau, K. Bastwöste, S. Möller, and U. Voelker, "Dispersion of the electronoptic properties of cerium-doped Sr0.61Ba0.39Nb2O6," J. Appl. Phys. 100, 053110-1-053110-6 (2006).
[CrossRef]

G. C. Valley, "Simultaneous electron/hole transport in photorefractive materials," J. Appl. Phys. 59, 3363-3366 (1986).
[CrossRef]

F. P. Strohkendl and R. W. Hellwarth, "Contribution of holes to the photorefractive effect in n-type Bi12SiO20," J. Appl. Phys. 62, 2450-2455 (1987).
[CrossRef]

S. Zhivkova and M. Miteva, "Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers," J. Appl. Phys. 68, 3099-3103 (1990).
[CrossRef]

J. Frejlich, "Fringe-locked running hologram and multiple photoactive species in Bi12TiO20," J. Appl. Phys. 68, 3104-3109 (1990).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. Barbosa and J. Frejlich, "Photorefractive fringe-locked running hologram analysis in the 3-dimensional space," J. Opt. A, Pure Appl. Opt. 5, S416-S419 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, "Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics," Opt. Commun. 141, 132-136 (1997).
[CrossRef]

J. Kumar, G. Albanese, and W. Steier, "Measurement of two-wave mixing gain in GaAs with a moving grating," Opt. Commun. 63, 191-193 (1987).
[CrossRef]

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, "Running holograms in photorefractive Bi2TiO20 crystals," Opt. Commun. 44, 19-23 (1982).
[CrossRef]

G. Pauliat, M. Allain, J. C. Launay, and G. Roosen, "Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals," Opt. Commun. 61, 321-324 (1987).
[CrossRef]

I. de Oliveira and J. Frejlich, "Dielectric relaxation time measurement in absorbing photorefractive materials," Opt. Commun. 178, 251-255 (2000).
[CrossRef]

D. J. Webb and L. Solymar, "The effects of optical activity and absorption on two-wave mixing in Bi12SiO20," Opt. Commun. 83, 287-294 (1991).
[CrossRef]

P. D. Foote and T. J. Hall, "Influence of optical activity on two beam coupling constants in photorefractive Bi12SiO20," Opt. Commun. 57, 201-206 (1986).
[CrossRef]

Opt. Lett.

Other

S. Stepanov and P. Petrov, Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics Series, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 1988), Chap. 9, pp. 263-289.

I. de Oliveira and J. Frejlich, "Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals," in Photorefractive Effects, Materials and Devices, G.J.Salamo, A.Siahmakoun, D.D.Nolte, and S.Stepanov, eds., Vol. 62 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 237-245.

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006).

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. Two-wave mixing setup with the 514.5 nm laser wavelength: BS, beamsplitter; PZT, piezoelectric-supported mirror; OSC, oscillator; D, photodetector; LA Ω and LA 2 Ω , lock-in amplifiers tuned to Ω and 2 Ω , respectively; HV, high voltage source driver for the PZT-supported mirror; M, mirror; BTO, Bi 12 Ti O 20 crystal; V o , applied voltage; I R , S o and I R , S , irradiance of the interfering beams in front and behind the crystal, respectively.

Fig. 2
Fig. 2

Diffraction efficiency versus detuning Ω = K v on a BTO sample (labeled BTO-011) experimental data (spots) and the theoretical curve with hole-electron competition with the following parameters: for electrons, L D = 0.12 ± 0.01 μ m , l s = 0.06 ± 0.005 μ m , and Φ = 0.3 ± 0.05 ; for holes, L D = 0.30 ± 0.05 μ m , l s = 0.19 ± 0.02 μ m , and Φ = 0.002 ± 0.001 . Experimental conditions: negative-gain wave coupling for electrons with λ = 514.5 nm light with I 0 = 20 mW cm 2 , β 2 = 40 , and K = 2.5 μ m 1 .

Fig. 3
Fig. 3

Diffraction efficiency versus detuning Ω = K v on a BTO sample (labelled BTO-02) experimental data (dots) and the theoretical curve with hole-electron competition with the following parameters: for electrons, L D = 0.174 ± 0.002 μ m , l s = 0.065 ± 0.01 μ m , and Φ = 0.15 ± 0.02 ; for holes, L D 0.5 μ m , l s = 0.14 ± 0.005 μ m , and Φ = 0.0025 ± 0.0015 . Experimental conditions: positive-gain wave coupling for electrons with λ = 514.5 nm light with I 0 = 20 mW cm 2 , β 2 = 40 , and K = 2.5 μ m 1 .

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

τ sc 1 E sc 1 ( t ) t + E sc 1 ( t ) = m E eff 1 e ı K v t κ 12 E sc 2 ( t ) ,
τ sc 2 E sc 2 ( t ) t + E sc 2 ( t ) = m E eff 2 e ı K v t κ 21 E sc 1 ( t ) ,
E eff i E 0 + ı E D i 1 + K 2 l s i 2 ı K l E i ,
1 τ sc i = ω R i + ı ω I i = 1 τ M i 1 + K 2 l s i 2 ı K l E i 1 + K 2 L D i 2 ı K L E i ,
τ M i = ϵ ϵ 0 h ν q μ i τ i Φ i α I ( 0 ) e α z ,
1 κ 12 = 1 + K 2 l s 1 2 ı K l E 1 1 κ 21 = 1 + K 2 l s 2 2 ı K l E 2 ,
E sc ( t ) = m E sc st e i K v t , with E sc ( t ) = E sc 1 ( t ) + E sc 2 ( t )
E sc st = E eff 1 ( ω R 1 + ı ω I 1 ) [ ( ω R 2 + ı ω I 2 ) ( 1 κ 21 ) ı K v ] ( ω R 2 + ı ω I 2 ı K v ) ( ω R 1 + ı ω I 1 ı K v ) ( ω R 2 + ı ω I 2 ) ( ω R 1 + ı ω I 1 ) κ 12 κ 21 + E eff 2 ( ω R 2 + ı ω I 2 ) [ ( ω R 1 + ı ω I 1 ) ( 1 κ 12 ) ı K v ] ( ω R 2 + ı ω I 2 ı K v ) ( ω R 1 + ı ω I 1 ı K v ) ( ω R 2 + ı ω 12 ) ( ω R 1 + ı ω I 1 ) κ 12 κ 21 .
η = 2 β 2 1 + β 2 cosh Γ ¯ d 2 cos γ ¯ d 2 β 2 e Γ ¯ d 2 + e Γ ¯ d 2 ,
Γ ¯ d = 0 d Γ d z with Γ = 2 π n 3 r eff λ I { E sc st } ,
γ ¯ d = 0 d γ d z with γ = 2 π n 3 r eff λ R { E sc st } ,
V Ω J 1 ( ψ d ) η sin φ ,
V 2 Ω J 2 ( ψ d ) η cos φ ,

Metrics