Abstract

A theory is presented to treat depolarized light scattering in a planar waveguide consisting of an ordered block copolymer thin film on a fused-silica substrate. In guided-wave depolarized light scattering (GWDLS), light is coupled into a transverse-magnetic mode of the film, which acts as a planar waveguide. Scattering of the incident light from randomly oriented, optically anisotropic grains results in the coupling of light into propagating transverse-electric (TE) modes in the sample. A dyadic Green’s function approach is employed to derive a quantitative relationship between the total optical power of the scattered TE wave and the average size of the grains. The grain size thus calculated from GWDLS experiments is consistent with the position space results of atomic force microscopy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription