Abstract

Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, 'Inhibited spontaneous emission in solid state physics and electronics,' Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, 'Strong localization of photons in certain disordered dielectric superlattices,' Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modeling, the Flow of Light, 1st ed. (Princeton U. Press, 1995).
  4. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, 'Channel drop tunneling through localized states,' Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]
  5. S. Noda, A. Chutinan, and M. Imada, 'Trapping and emission of photons by a single defect in a photonic bandgap structure,' Nature 407, 608-610 (2000).
    [CrossRef] [PubMed]
  6. M. Qiu and B. Jaskorzynska, 'A design of a channel drop filter in a two-dimentional triangular photonic crystal,' Appl. Phys. Lett. 83, 1074-1076 (2003).
    [CrossRef]
  7. B. S. Song, S. Noda, T. Asano, and Y. Akahane, 'Ultra-high-Q photonic double-heterostructure nanocavity,' Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  8. Z. Y. Zhang and M. Qiu, 'Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,' Opt. Express 12, 3988-3995 (2004).
    [CrossRef] [PubMed]
  9. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  10. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, 'Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,' Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  11. J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, 'Slab-edge modes in two-dimensional photonic crystals,' Appl. Phys. Lett. 84, 3016-3018 (2004).
    [CrossRef]
  12. S. Xiao and M. Qiu, 'Surface mode microcavity,' Appl. Phys. Lett. 87, 111102 (2005).
    [CrossRef]
  13. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  14. M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, 'Microcavity confinement based on an anomalous zero group-velocity waveguide mode,' Opt. Lett. 30, 552-554 (2005).
    [CrossRef] [PubMed]
  15. Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
    [CrossRef]

2007 (1)

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

2006 (1)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, 'Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,' Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

2005 (3)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, 'Ultra-high-Q photonic double-heterostructure nanocavity,' Nat. Mater. 4, 207-210 (2005).
[CrossRef]

S. Xiao and M. Qiu, 'Surface mode microcavity,' Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, 'Microcavity confinement based on an anomalous zero group-velocity waveguide mode,' Opt. Lett. 30, 552-554 (2005).
[CrossRef] [PubMed]

2004 (2)

Z. Y. Zhang and M. Qiu, 'Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,' Opt. Express 12, 3988-3995 (2004).
[CrossRef] [PubMed]

J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, 'Slab-edge modes in two-dimensional photonic crystals,' Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

2003 (1)

M. Qiu and B. Jaskorzynska, 'A design of a channel drop filter in a two-dimentional triangular photonic crystal,' Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, 'Trapping and emission of photons by a single defect in a photonic bandgap structure,' Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, 'Channel drop tunneling through localized states,' Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

1987 (2)

E. Yablonovitch, 'Inhibited spontaneous emission in solid state physics and electronics,' Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, 'Strong localization of photons in certain disordered dielectric superlattices,' Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, 'Ultra-high-Q photonic double-heterostructure nanocavity,' Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Andersson, U.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, 'Ultra-high-Q photonic double-heterostructure nanocavity,' Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, 'Trapping and emission of photons by a single defect in a photonic bandgap structure,' Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Dainese, M.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Fan, S.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, 'Channel drop tunneling through localized states,' Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Fink, Y.

Haus, H. A.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, 'Channel drop tunneling through localized states,' Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Ibanescu, M.

Imada, M.

S. Noda, A. Chutinan, and M. Imada, 'Trapping and emission of photons by a single defect in a photonic bandgap structure,' Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Jaskorzynska, B.

M. Qiu and B. Jaskorzynska, 'A design of a channel drop filter in a two-dimentional triangular photonic crystal,' Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

Joannopoulos, J. D.

M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, 'Microcavity confinement based on an anomalous zero group-velocity waveguide mode,' Opt. Lett. 30, 552-554 (2005).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, 'Channel drop tunneling through localized states,' Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modeling, the Flow of Light, 1st ed. (Princeton U. Press, 1995).

John, S.

S. John, 'Strong localization of photons in certain disordered dielectric superlattices,' Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Kim, G. H.

J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, 'Slab-edge modes in two-dimensional photonic crystals,' Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, S. B.

J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, 'Slab-edge modes in two-dimensional photonic crystals,' Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Kim, S. H.

J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, 'Slab-edge modes in two-dimensional photonic crystals,' Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, 'Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,' Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, 'Slab-edge modes in two-dimensional photonic crystals,' Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modeling, the Flow of Light, 1st ed. (Princeton U. Press, 1995).

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, 'Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,' Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Noda, S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, 'Ultra-high-Q photonic double-heterostructure nanocavity,' Nat. Mater. 4, 207-210 (2005).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, 'Trapping and emission of photons by a single defect in a photonic bandgap structure,' Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, 'Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,' Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Obrien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Park, H. G.

J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, 'Slab-edge modes in two-dimensional photonic crystals,' Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Qiu, M.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

S. Xiao and M. Qiu, 'Surface mode microcavity,' Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

Z. Y. Zhang and M. Qiu, 'Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,' Opt. Express 12, 3988-3995 (2004).
[CrossRef] [PubMed]

M. Qiu and B. Jaskorzynska, 'A design of a channel drop filter in a two-dimentional triangular photonic crystal,' Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

Roundy, D.

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, 'Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,' Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, 'Ultra-high-Q photonic double-heterostructure nanocavity,' Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Swillo, M.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, 'Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,' Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, 'Channel drop tunneling through localized states,' Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Winn, J.

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modeling, the Flow of Light, 1st ed. (Princeton U. Press, 1995).

Wosinski, L.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

Xiao, S.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

S. Xiao and M. Qiu, 'Surface mode microcavity,' Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, 'Inhibited spontaneous emission in solid state physics and electronics,' Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yang, J.

J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, 'Slab-edge modes in two-dimensional photonic crystals,' Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Zhang, Z.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

Zhang, Z. Y.

Appl. Phys. Lett. (5)

M. Qiu and B. Jaskorzynska, 'A design of a channel drop filter in a two-dimentional triangular photonic crystal,' Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, 'Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,' Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, 'Slab-edge modes in two-dimensional photonic crystals,' Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

S. Xiao and M. Qiu, 'Surface mode microcavity,' Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, 'Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,' Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, 'Ultra-high-Q photonic double-heterostructure nanocavity,' Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nature (1)

S. Noda, A. Chutinan, and M. Imada, 'Trapping and emission of photons by a single defect in a photonic bandgap structure,' Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, 'Channel drop tunneling through localized states,' Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

E. Yablonovitch, 'Inhibited spontaneous emission in solid state physics and electronics,' Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, 'Strong localization of photons in certain disordered dielectric superlattices,' Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien,P. D. Dapkus, and I. Kim, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modeling, the Flow of Light, 1st ed. (Princeton U. Press, 1995).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Surface band structure for the (10) surface of a 2D square PhC of dielectric rods in air, where the radius of rods is 0.20 a (a is the lattice constant), the dielectric constant of the rods is 11.56, and the radius of the rods at the surface is 0.15 a . The inset shows the corresponding structure.

Fig. 2
Fig. 2

(a)Schematic of a microcavity composed by a 2D square PhC. The gray rods, acting as reflecting mirrors in the y direction, are the same as those interior rods. Length of the cavity is denoted by L. (b) Resonant mode in a cavity of length L = 5 a . Here we show the electric field cross section of the surface resonant mode. (c) Resonant mode for L = 11 a .

Fig. 3
Fig. 3

(a) Quality factor ( Q ) is plotted as a function of the cavity length ( L ) and the width ( W ) of the reflecting mirrors of the microcavity in a 2D square PhC. (b) Resonant frequency as a function of the cavity length and the width of the reflecting mirrors of the microcavity.

Fig. 4
Fig. 4

(a) Surface band structure for the Γ K surface of a 2D triangular PhC of air holes, see inset, extending through a high-index ( ϵ = 11.56 ) infinite-height dielectric. The radius of holes is 0.3 a and the distance between the centers of first right holes and the right boundary of the dielectric is d = 3 a 2 . (b) Schematic of a microcavity composed by a 2D triangular PhC. The reflecting mirrors in y direction are introduced by enlarging the radius of surface color-filled holes.

Fig. 5
Fig. 5

(a) Quality factor is plotted as a function of the cavity length and the radius ( R d ) of the reflecting holes of the microcavity in a 2D triangular PhC. (b) Resonant frequency as a function of the cavity length and the radius of the reflecting holes of the microcavity.

Fig. 6
Fig. 6

Surface band structure for the Γ K surface of a triangular PhC slab with air holes in a SOI structure.

Fig. 7
Fig. 7

Frequencies and quality factors of the resonant mode as a function of the cavity length. The microcavity is composed by a 2D PhC slab in a SOI structure with air hole height of 0.6 a .

Metrics