Abstract

Spatial optical solitons have already been successfully launched in a pure nematic or in a dye-doped nematic, exploiting either the orientational or thermal nonlinearity of the liquid-crystal materials. The self-induced index gradient that yields to self-collimation of the beam is a diffusion-type process. In the case of reorientational nonlinearity, it is correlated to the elastic property of the liquid crystal bounded by its container. We show that launching a spatial soliton is possible in more frustrated systems, such as a polymer-stabilized nematic, despite the loss of mobility of the liquid-crystal molecules embedded in a light polymer network. It is shown not only that the soliton is obtained for input powers similar to and even lower than those in the pure nematic, but that it is more stable. Moreover, it has been possible to partially freeze an index gradient during the polymerization process and to launch a soliton without any extra bias.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Braun, L. Faucheux, and A. Libchaber, 'Strong self-focusing in nematic liquid crystals,' Phys. Rev. A 48, 611-622 (1993).
    [CrossRef] [PubMed]
  2. D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, 'Light interacting with liquid crystals,' Physica D 68, 116-126 (1993).
    [CrossRef]
  3. N. V. Tabiryan, A. V. Sukhov, and B. Ya Zel'dovich, 'The orientational optical nonlinearity of liquid crystals,' Mol. Cryst. Liq. Cryst. 136, 1-139 (1986).
    [CrossRef]
  4. F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals, Vol. 2 of Series on Liquid Crystals (World Scientific, 1997), Chap. 4.
  5. M. Warenghem, J. F. Henninot, and G. Abbate, 'Non linearly induced self waveguiding structure in dye doped nematic liquid crystals confined in capillaries,' Opt. Express 2, 483-490 (1998).
    [CrossRef] [PubMed]
  6. M. Warenghem, J. F. Henninot, and G. Abbate, 'From bulk Janossy effect to nonlinear self wave-guiding spatial soliton in dye-doped liquid crystals,' J. Nonlinear Opt. Phys. Mater. 8, 341-360 (1999).
    [CrossRef]
  7. M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, 'Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,' Appl. Phys. Lett. 77, 7-9 (2000).
    [CrossRef]
  8. M. Peccianti, C. Conti, and G. Assanto, 'Interplay between nonlocality and nonlinearity in nematic liquid crystals,' Opt. Lett. 30, 415-417 (2005).
    [CrossRef] [PubMed]
  9. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, 'Routing of anisotropic spatial solitons and modulation instability in liquid crystals,' Nature 432, 733-737 (2004).
    [CrossRef] [PubMed]
  10. S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, 'Spatial soliton all-optical logic gates,' IEEE Photonics Technol. Lett. 18, 1287-1289 (2006).
    [CrossRef]
  11. P. Rasmussen, O. Bang, and W. Krolikowski, 'Theory of nonlocal soliton interaction in nematic liquid crystals,' Phys. Rev. E 72, 066611 (2005).
    [CrossRef]
  12. O. Bang, W. Krolikowski, and J. Wyller, 'Collapse arrest and beam stabilization in nonlocal nonlinear media,' Phys. Rev. E 66, 046619 (2002).
    [CrossRef]
  13. C. Conti, M. Peccianti, and G. Assanto, 'Observation of optical spatial solitons in a highly nonlocal medium,' Phys. Rev. Lett. 92, 113902 (2004).
    [CrossRef] [PubMed]
  14. C. Conti, M. Peccianti, and G. Assanto, 'Route to nonlocality and observation of accessible solitons,' Phys. Rev. E 91, 073901 (2003).
  15. M. Warenghem, J. F. Blach, and J. F. Henninot, 'Measuring and monitoring optically induced thermal or orientational non-locality in nematic liquid crystal,' Mol. Cryst. Liq. Cryst. 454, 297-314 (2006).
    [CrossRef]
  16. Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, 2003), Chap. 1.
  17. M. Peccianti, C. Conti, and G. Assanto, 'Optical multisoliton generation in nematic liquid crystals,' Opt. Lett. 28, 2231-2333 (2003).
    [CrossRef] [PubMed]
  18. P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, and G. P. Crawford, 'Virtual surfaces, director domains, and the Freedricksz transition in polymer stabilized nematic liquid crystals,' Appl. Phys. Lett. 81, 2986-2988 (2002).
    [CrossRef]
  19. J. F. Blach, M. Warenghem, and D. Bormann, 'Probing thick uniaxial birefringent medium in confined geometry: polarized confocal micro-Raman approach,' Vib. Spectrosc. 41, 48-58 (2006).
    [CrossRef]
  20. R. Barberi and G. Barbero, Physics of Liquid Crystalline Materials (Gordon & Breach, 1991), Chap. 9, p. 215.
  21. M. Warenghem, J. F. Henninot, and J. F. Blach, 'Measurement, control and use of non-locality in some liquid crystal based devices,' Proc. SPIE 5947 (2005).
    [CrossRef]
  22. J. F. Henninot, M. Debailleul, F. Derrien, and M. Warenghem, 'In situ intensity profile measurements of spatial quasi-solitons in thick dye-doped liquid crystal samples,' J. Opt. A, Pure Appl. Opt. 5, 250-255 (2003).
    [CrossRef]
  23. C. Conti, M. Peccianti, and G. Assanto, 'Spatial solitons and modulation instability in the presence of large birefringence: the case of highly nonlocal liquid crystals,' Phys. Rev. E 72, 066614 (2005).
    [CrossRef]
  24. S. E. Skipetrov, 'Instability of speckle patterns in random media with noninstantaneous Kerr nonlinearity,' Opt. Lett. 28, 646-648 (2003).
    [CrossRef] [PubMed]
  25. K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, 'Quasi-solitonic behaviour of self-written waveguides created by photopolymerization,' Opt. Lett. 27, 1782-1784 (2002).
    [CrossRef]
  26. M. Peccianti and G. Assanto, 'Observation of power-dependent walk off via modulationnal instability in nematic liquid crystals,' Opt. Lett. 30, 2290-2292 (2005).
    [CrossRef] [PubMed]

2006

S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, 'Spatial soliton all-optical logic gates,' IEEE Photonics Technol. Lett. 18, 1287-1289 (2006).
[CrossRef]

M. Warenghem, J. F. Blach, and J. F. Henninot, 'Measuring and monitoring optically induced thermal or orientational non-locality in nematic liquid crystal,' Mol. Cryst. Liq. Cryst. 454, 297-314 (2006).
[CrossRef]

J. F. Blach, M. Warenghem, and D. Bormann, 'Probing thick uniaxial birefringent medium in confined geometry: polarized confocal micro-Raman approach,' Vib. Spectrosc. 41, 48-58 (2006).
[CrossRef]

2005

M. Warenghem, J. F. Henninot, and J. F. Blach, 'Measurement, control and use of non-locality in some liquid crystal based devices,' Proc. SPIE 5947 (2005).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, 'Spatial solitons and modulation instability in the presence of large birefringence: the case of highly nonlocal liquid crystals,' Phys. Rev. E 72, 066614 (2005).
[CrossRef]

P. Rasmussen, O. Bang, and W. Krolikowski, 'Theory of nonlocal soliton interaction in nematic liquid crystals,' Phys. Rev. E 72, 066611 (2005).
[CrossRef]

M. Peccianti, C. Conti, and G. Assanto, 'Interplay between nonlocality and nonlinearity in nematic liquid crystals,' Opt. Lett. 30, 415-417 (2005).
[CrossRef] [PubMed]

M. Peccianti and G. Assanto, 'Observation of power-dependent walk off via modulationnal instability in nematic liquid crystals,' Opt. Lett. 30, 2290-2292 (2005).
[CrossRef] [PubMed]

2004

C. Conti, M. Peccianti, and G. Assanto, 'Observation of optical spatial solitons in a highly nonlocal medium,' Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, 'Routing of anisotropic spatial solitons and modulation instability in liquid crystals,' Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

2003

J. F. Henninot, M. Debailleul, F. Derrien, and M. Warenghem, 'In situ intensity profile measurements of spatial quasi-solitons in thick dye-doped liquid crystal samples,' J. Opt. A, Pure Appl. Opt. 5, 250-255 (2003).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, 'Route to nonlocality and observation of accessible solitons,' Phys. Rev. E 91, 073901 (2003).

S. E. Skipetrov, 'Instability of speckle patterns in random media with noninstantaneous Kerr nonlinearity,' Opt. Lett. 28, 646-648 (2003).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, 'Optical multisoliton generation in nematic liquid crystals,' Opt. Lett. 28, 2231-2333 (2003).
[CrossRef] [PubMed]

2002

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, 'Quasi-solitonic behaviour of self-written waveguides created by photopolymerization,' Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

O. Bang, W. Krolikowski, and J. Wyller, 'Collapse arrest and beam stabilization in nonlocal nonlinear media,' Phys. Rev. E 66, 046619 (2002).
[CrossRef]

P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, and G. P. Crawford, 'Virtual surfaces, director domains, and the Freedricksz transition in polymer stabilized nematic liquid crystals,' Appl. Phys. Lett. 81, 2986-2988 (2002).
[CrossRef]

2000

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, 'Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,' Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

1999

M. Warenghem, J. F. Henninot, and G. Abbate, 'From bulk Janossy effect to nonlinear self wave-guiding spatial soliton in dye-doped liquid crystals,' J. Nonlinear Opt. Phys. Mater. 8, 341-360 (1999).
[CrossRef]

1998

1993

E. Braun, L. Faucheux, and A. Libchaber, 'Strong self-focusing in nematic liquid crystals,' Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, 'Light interacting with liquid crystals,' Physica D 68, 116-126 (1993).
[CrossRef]

1986

N. V. Tabiryan, A. V. Sukhov, and B. Ya Zel'dovich, 'The orientational optical nonlinearity of liquid crystals,' Mol. Cryst. Liq. Cryst. 136, 1-139 (1986).
[CrossRef]

Abbate, G.

M. Warenghem, J. F. Henninot, and G. Abbate, 'From bulk Janossy effect to nonlinear self wave-guiding spatial soliton in dye-doped liquid crystals,' J. Nonlinear Opt. Phys. Mater. 8, 341-360 (1999).
[CrossRef]

M. Warenghem, J. F. Henninot, and G. Abbate, 'Non linearly induced self waveguiding structure in dye doped nematic liquid crystals confined in capillaries,' Opt. Express 2, 483-490 (1998).
[CrossRef] [PubMed]

Agrawal, G. P.

Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, 2003), Chap. 1.

Assanto, G.

S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, 'Spatial soliton all-optical logic gates,' IEEE Photonics Technol. Lett. 18, 1287-1289 (2006).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, 'Spatial solitons and modulation instability in the presence of large birefringence: the case of highly nonlocal liquid crystals,' Phys. Rev. E 72, 066614 (2005).
[CrossRef]

M. Peccianti, C. Conti, and G. Assanto, 'Interplay between nonlocality and nonlinearity in nematic liquid crystals,' Opt. Lett. 30, 415-417 (2005).
[CrossRef] [PubMed]

M. Peccianti and G. Assanto, 'Observation of power-dependent walk off via modulationnal instability in nematic liquid crystals,' Opt. Lett. 30, 2290-2292 (2005).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, 'Routing of anisotropic spatial solitons and modulation instability in liquid crystals,' Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, 'Observation of optical spatial solitons in a highly nonlocal medium,' Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, 'Optical multisoliton generation in nematic liquid crystals,' Opt. Lett. 28, 2231-2333 (2003).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, 'Route to nonlocality and observation of accessible solitons,' Phys. Rev. E 91, 073901 (2003).

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, 'Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,' Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

Bang, O.

P. Rasmussen, O. Bang, and W. Krolikowski, 'Theory of nonlocal soliton interaction in nematic liquid crystals,' Phys. Rev. E 72, 066611 (2005).
[CrossRef]

O. Bang, W. Krolikowski, and J. Wyller, 'Collapse arrest and beam stabilization in nonlocal nonlinear media,' Phys. Rev. E 66, 046619 (2002).
[CrossRef]

Barberi, R.

R. Barberi and G. Barbero, Physics of Liquid Crystalline Materials (Gordon & Breach, 1991), Chap. 9, p. 215.

Barbero, G.

R. Barberi and G. Barbero, Physics of Liquid Crystalline Materials (Gordon & Breach, 1991), Chap. 9, p. 215.

Blach, J. F.

M. Warenghem, J. F. Blach, and J. F. Henninot, 'Measuring and monitoring optically induced thermal or orientational non-locality in nematic liquid crystal,' Mol. Cryst. Liq. Cryst. 454, 297-314 (2006).
[CrossRef]

J. F. Blach, M. Warenghem, and D. Bormann, 'Probing thick uniaxial birefringent medium in confined geometry: polarized confocal micro-Raman approach,' Vib. Spectrosc. 41, 48-58 (2006).
[CrossRef]

M. Warenghem, J. F. Henninot, and J. F. Blach, 'Measurement, control and use of non-locality in some liquid crystal based devices,' Proc. SPIE 5947 (2005).
[CrossRef]

Bormann, D.

J. F. Blach, M. Warenghem, and D. Bormann, 'Probing thick uniaxial birefringent medium in confined geometry: polarized confocal micro-Raman approach,' Vib. Spectrosc. 41, 48-58 (2006).
[CrossRef]

Braun, E.

E. Braun, L. Faucheux, and A. Libchaber, 'Strong self-focusing in nematic liquid crystals,' Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

Carre, C.

Conti, C.

M. Peccianti, C. Conti, and G. Assanto, 'Interplay between nonlocality and nonlinearity in nematic liquid crystals,' Opt. Lett. 30, 415-417 (2005).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, 'Spatial solitons and modulation instability in the presence of large birefringence: the case of highly nonlocal liquid crystals,' Phys. Rev. E 72, 066614 (2005).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, 'Observation of optical spatial solitons in a highly nonlocal medium,' Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, 'Routing of anisotropic spatial solitons and modulation instability in liquid crystals,' Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, 'Optical multisoliton generation in nematic liquid crystals,' Opt. Lett. 28, 2231-2333 (2003).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, 'Route to nonlocality and observation of accessible solitons,' Phys. Rev. E 91, 073901 (2003).

Crawford, G. P.

P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, and G. P. Crawford, 'Virtual surfaces, director domains, and the Freedricksz transition in polymer stabilized nematic liquid crystals,' Appl. Phys. Lett. 81, 2986-2988 (2002).
[CrossRef]

Crégut, O.

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, 'Routing of anisotropic spatial solitons and modulation instability in liquid crystals,' Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, 'Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,' Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

de Rossi, A.

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, 'Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,' Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

Debailleul, M.

J. F. Henninot, M. Debailleul, F. Derrien, and M. Warenghem, 'In situ intensity profile measurements of spatial quasi-solitons in thick dye-doped liquid crystal samples,' J. Opt. A, Pure Appl. Opt. 5, 250-255 (2003).
[CrossRef]

Derrien, F.

J. F. Henninot, M. Debailleul, F. Derrien, and M. Warenghem, 'In situ intensity profile measurements of spatial quasi-solitons in thick dye-doped liquid crystal samples,' J. Opt. A, Pure Appl. Opt. 5, 250-255 (2003).
[CrossRef]

Dorkenoo, K.

Faucheux, L.

E. Braun, L. Faucheux, and A. Libchaber, 'Strong self-focusing in nematic liquid crystals,' Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

Fort, A.

Gillot, F.

Henninot, J. F.

M. Warenghem, J. F. Blach, and J. F. Henninot, 'Measuring and monitoring optically induced thermal or orientational non-locality in nematic liquid crystal,' Mol. Cryst. Liq. Cryst. 454, 297-314 (2006).
[CrossRef]

M. Warenghem, J. F. Henninot, and J. F. Blach, 'Measurement, control and use of non-locality in some liquid crystal based devices,' Proc. SPIE 5947 (2005).
[CrossRef]

J. F. Henninot, M. Debailleul, F. Derrien, and M. Warenghem, 'In situ intensity profile measurements of spatial quasi-solitons in thick dye-doped liquid crystal samples,' J. Opt. A, Pure Appl. Opt. 5, 250-255 (2003).
[CrossRef]

M. Warenghem, J. F. Henninot, and G. Abbate, 'From bulk Janossy effect to nonlinear self wave-guiding spatial soliton in dye-doped liquid crystals,' J. Nonlinear Opt. Phys. Mater. 8, 341-360 (1999).
[CrossRef]

M. Warenghem, J. F. Henninot, and G. Abbate, 'Non linearly induced self waveguiding structure in dye doped nematic liquid crystals confined in capillaries,' Opt. Express 2, 483-490 (1998).
[CrossRef] [PubMed]

Khoo, I. C.

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, 'Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,' Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

Kivshar, Y. S.

Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, 2003), Chap. 1.

Kossyrev, P. A.

P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, and G. P. Crawford, 'Virtual surfaces, director domains, and the Freedricksz transition in polymer stabilized nematic liquid crystals,' Appl. Phys. Lett. 81, 2986-2988 (2002).
[CrossRef]

Krolikowski, W.

P. Rasmussen, O. Bang, and W. Krolikowski, 'Theory of nonlocal soliton interaction in nematic liquid crystals,' Phys. Rev. E 72, 066611 (2005).
[CrossRef]

O. Bang, W. Krolikowski, and J. Wyller, 'Collapse arrest and beam stabilization in nonlocal nonlinear media,' Phys. Rev. E 66, 046619 (2002).
[CrossRef]

Libchaber, A.

E. Braun, L. Faucheux, and A. Libchaber, 'Strong self-focusing in nematic liquid crystals,' Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

Mager, L.

McLaughlin, D. W.

D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, 'Light interacting with liquid crystals,' Physica D 68, 116-126 (1993).
[CrossRef]

Muraki, D. J.

D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, 'Light interacting with liquid crystals,' Physica D 68, 116-126 (1993).
[CrossRef]

Peccianti, M.

S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, 'Spatial soliton all-optical logic gates,' IEEE Photonics Technol. Lett. 18, 1287-1289 (2006).
[CrossRef]

M. Peccianti, C. Conti, and G. Assanto, 'Interplay between nonlocality and nonlinearity in nematic liquid crystals,' Opt. Lett. 30, 415-417 (2005).
[CrossRef] [PubMed]

M. Peccianti and G. Assanto, 'Observation of power-dependent walk off via modulationnal instability in nematic liquid crystals,' Opt. Lett. 30, 2290-2292 (2005).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, 'Spatial solitons and modulation instability in the presence of large birefringence: the case of highly nonlocal liquid crystals,' Phys. Rev. E 72, 066614 (2005).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, 'Routing of anisotropic spatial solitons and modulation instability in liquid crystals,' Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, 'Observation of optical spatial solitons in a highly nonlocal medium,' Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, 'Optical multisoliton generation in nematic liquid crystals,' Opt. Lett. 28, 2231-2333 (2003).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, 'Route to nonlocality and observation of accessible solitons,' Phys. Rev. E 91, 073901 (2003).

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, 'Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,' Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

Pelcovits, R. A.

P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, and G. P. Crawford, 'Virtual surfaces, director domains, and the Freedricksz transition in polymer stabilized nematic liquid crystals,' Appl. Phys. Lett. 81, 2986-2988 (2002).
[CrossRef]

Priezjev, N. V.

P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, and G. P. Crawford, 'Virtual surfaces, director domains, and the Freedricksz transition in polymer stabilized nematic liquid crystals,' Appl. Phys. Lett. 81, 2986-2988 (2002).
[CrossRef]

Qi, J.

P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, and G. P. Crawford, 'Virtual surfaces, director domains, and the Freedricksz transition in polymer stabilized nematic liquid crystals,' Appl. Phys. Lett. 81, 2986-2988 (2002).
[CrossRef]

Rasmussen, P.

P. Rasmussen, O. Bang, and W. Krolikowski, 'Theory of nonlocal soliton interaction in nematic liquid crystals,' Phys. Rev. E 72, 066611 (2005).
[CrossRef]

Serak, S. V.

S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, 'Spatial soliton all-optical logic gates,' IEEE Photonics Technol. Lett. 18, 1287-1289 (2006).
[CrossRef]

Shelley, M. J.

D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, 'Light interacting with liquid crystals,' Physica D 68, 116-126 (1993).
[CrossRef]

Simoni, F.

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals, Vol. 2 of Series on Liquid Crystals (World Scientific, 1997), Chap. 4.

Skipetrov, S. E.

Sukhov, A. V.

N. V. Tabiryan, A. V. Sukhov, and B. Ya Zel'dovich, 'The orientational optical nonlinearity of liquid crystals,' Mol. Cryst. Liq. Cryst. 136, 1-139 (1986).
[CrossRef]

Tabiryan, N. V.

S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, 'Spatial soliton all-optical logic gates,' IEEE Photonics Technol. Lett. 18, 1287-1289 (2006).
[CrossRef]

N. V. Tabiryan, A. V. Sukhov, and B. Ya Zel'dovich, 'The orientational optical nonlinearity of liquid crystals,' Mol. Cryst. Liq. Cryst. 136, 1-139 (1986).
[CrossRef]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, 'Routing of anisotropic spatial solitons and modulation instability in liquid crystals,' Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, 'Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,' Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

Warenghem, M.

M. Warenghem, J. F. Blach, and J. F. Henninot, 'Measuring and monitoring optically induced thermal or orientational non-locality in nematic liquid crystal,' Mol. Cryst. Liq. Cryst. 454, 297-314 (2006).
[CrossRef]

J. F. Blach, M. Warenghem, and D. Bormann, 'Probing thick uniaxial birefringent medium in confined geometry: polarized confocal micro-Raman approach,' Vib. Spectrosc. 41, 48-58 (2006).
[CrossRef]

M. Warenghem, J. F. Henninot, and J. F. Blach, 'Measurement, control and use of non-locality in some liquid crystal based devices,' Proc. SPIE 5947 (2005).
[CrossRef]

J. F. Henninot, M. Debailleul, F. Derrien, and M. Warenghem, 'In situ intensity profile measurements of spatial quasi-solitons in thick dye-doped liquid crystal samples,' J. Opt. A, Pure Appl. Opt. 5, 250-255 (2003).
[CrossRef]

M. Warenghem, J. F. Henninot, and G. Abbate, 'From bulk Janossy effect to nonlinear self wave-guiding spatial soliton in dye-doped liquid crystals,' J. Nonlinear Opt. Phys. Mater. 8, 341-360 (1999).
[CrossRef]

M. Warenghem, J. F. Henninot, and G. Abbate, 'Non linearly induced self waveguiding structure in dye doped nematic liquid crystals confined in capillaries,' Opt. Express 2, 483-490 (1998).
[CrossRef] [PubMed]

Wyller, J.

O. Bang, W. Krolikowski, and J. Wyller, 'Collapse arrest and beam stabilization in nonlocal nonlinear media,' Phys. Rev. E 66, 046619 (2002).
[CrossRef]

Ya Zel'dovich, B.

N. V. Tabiryan, A. V. Sukhov, and B. Ya Zel'dovich, 'The orientational optical nonlinearity of liquid crystals,' Mol. Cryst. Liq. Cryst. 136, 1-139 (1986).
[CrossRef]

Appl. Phys. Lett.

P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, and G. P. Crawford, 'Virtual surfaces, director domains, and the Freedricksz transition in polymer stabilized nematic liquid crystals,' Appl. Phys. Lett. 81, 2986-2988 (2002).
[CrossRef]

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, 'Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,' Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

IEEE Photonics Technol. Lett.

S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, 'Spatial soliton all-optical logic gates,' IEEE Photonics Technol. Lett. 18, 1287-1289 (2006).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

M. Warenghem, J. F. Henninot, and G. Abbate, 'From bulk Janossy effect to nonlinear self wave-guiding spatial soliton in dye-doped liquid crystals,' J. Nonlinear Opt. Phys. Mater. 8, 341-360 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

J. F. Henninot, M. Debailleul, F. Derrien, and M. Warenghem, 'In situ intensity profile measurements of spatial quasi-solitons in thick dye-doped liquid crystal samples,' J. Opt. A, Pure Appl. Opt. 5, 250-255 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst.

N. V. Tabiryan, A. V. Sukhov, and B. Ya Zel'dovich, 'The orientational optical nonlinearity of liquid crystals,' Mol. Cryst. Liq. Cryst. 136, 1-139 (1986).
[CrossRef]

M. Warenghem, J. F. Blach, and J. F. Henninot, 'Measuring and monitoring optically induced thermal or orientational non-locality in nematic liquid crystal,' Mol. Cryst. Liq. Cryst. 454, 297-314 (2006).
[CrossRef]

Nature

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, 'Routing of anisotropic spatial solitons and modulation instability in liquid crystals,' Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

E. Braun, L. Faucheux, and A. Libchaber, 'Strong self-focusing in nematic liquid crystals,' Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

Phys. Rev. E

C. Conti, M. Peccianti, and G. Assanto, 'Spatial solitons and modulation instability in the presence of large birefringence: the case of highly nonlocal liquid crystals,' Phys. Rev. E 72, 066614 (2005).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, 'Route to nonlocality and observation of accessible solitons,' Phys. Rev. E 91, 073901 (2003).

P. Rasmussen, O. Bang, and W. Krolikowski, 'Theory of nonlocal soliton interaction in nematic liquid crystals,' Phys. Rev. E 72, 066611 (2005).
[CrossRef]

O. Bang, W. Krolikowski, and J. Wyller, 'Collapse arrest and beam stabilization in nonlocal nonlinear media,' Phys. Rev. E 66, 046619 (2002).
[CrossRef]

Phys. Rev. Lett.

C. Conti, M. Peccianti, and G. Assanto, 'Observation of optical spatial solitons in a highly nonlocal medium,' Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

Physica D

D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, 'Light interacting with liquid crystals,' Physica D 68, 116-126 (1993).
[CrossRef]

Proc. SPIE

M. Warenghem, J. F. Henninot, and J. F. Blach, 'Measurement, control and use of non-locality in some liquid crystal based devices,' Proc. SPIE 5947 (2005).
[CrossRef]

Vib. Spectrosc.

J. F. Blach, M. Warenghem, and D. Bormann, 'Probing thick uniaxial birefringent medium in confined geometry: polarized confocal micro-Raman approach,' Vib. Spectrosc. 41, 48-58 (2006).
[CrossRef]

Other

R. Barberi and G. Barbero, Physics of Liquid Crystalline Materials (Gordon & Breach, 1991), Chap. 9, p. 215.

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals, Vol. 2 of Series on Liquid Crystals (World Scientific, 1997), Chap. 4.

Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, 2003), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Chemical structure of the monomer used to prepare the polymer-stabilized nematic.

Fig. 2
Fig. 2

Polymer network. The cell was heated at 100 ° C , and the LC is isotropic. Height, 600 μ m ; width, 800 μ m .

Fig. 3
Fig. 3

Setup for measuring the cell transmission under applied voltage. He–Ne, laser; P, A, polarizers; LC, liquid-crystal cell; Ph, photodiode; V, bias supply.

Fig. 4
Fig. 4

Experimental transmitted intensity. (Left) E7 cell; threshold estimated, 0.99 V (Right) PSN cell; threshold, 1.2 V .

Fig. 5
Fig. 5

Setup for Raman scattering measurement yielding overall alignment of the cell versus applied voltage.

Fig. 6
Fig. 6

Raman signal intensity for the C N bond ( 2224 cm 1 ) versus applied voltage. (Left) Pure E7; δ α = 10.64 ; δ β = 2.35 . (Right) PSN cell; δ α = 38.6 ; δ β = 0.4 .

Fig. 7
Fig. 7

Angle in the middle of the cell calculated versus applied voltage. Thick curve, pure E7 cell; thin curve, PSN. The dashed vertical and horizontal lines refer to a specific applied voltage (see text).

Fig. 8
Fig. 8

Geometry used for excitation and observation of the spatial soliton. The double arrow represents the optical axis of the LC.

Fig. 9
Fig. 9

Photos of the soliton: left, E7 cell; right, PSN cell. Applied voltage, 1.75 V . The beam cross-section profiles have been captured every 100 μ m at the places marked with the white lines, and the waists have been measured and plotted in Fig. 10. The distance from the source fiber (marked at the bottom) and the first cross section is 100 μ m as well. This gives the photos scale.

Fig. 10
Fig. 10

Plot of waists as a function of the input power measured at different distances away from the source. Applied voltage, 1.75 V . (Left) pure E7 cell; (Right) PSN cell.

Fig. 11
Fig. 11

Plot of waists as a function of the input power measured at different distances away from the source. The applied voltage is such that both cells have the same midcell tilt angle ( 35 ° ) . (Left) Pure E7 cell, V = 1.1 V ; (Right) PSN cell, V = 1.33 V .

Fig. 12
Fig. 12

Photos of a soliton in a bias-free PSN cell. The input power is increased (1 and 2) and then decreased (3 and 4). The white line on photo 2 is 500 μ m long to show the scale, which is identical in both directions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I Raman = C 0 d cell [ 1 + δ α sin 2 ( θ ) δ β sin ( 2 θ ) ] 2 δ z ,
d θ sin 2 ( θ z ) sin 2 ( θ cent ) = d z ξ ,
ξ = V th V d cell π , V th = π 4 π K Δ ϵ ,
θ 0 θ cent d θ sin 2 ( θ ) sin 2 ( θ cent ) = d cell 2 ξ = π 2 V V th .
I Raman I 0 = V th V θ 0 θ cent [ 1 + δ α sin 2 ( θ ) δ β sin ( 2 θ ) ] 2 sin 2 ( θ ) sin 2 ( θ cent ) d θ .

Metrics