Abstract

In situ characterization and control of the phase of broadband femtosecond pulses in microscopy can be achieved with a novel simplified scheme based on spectral shear interferometry for direct electric field reconstruction (SPIDER): the use of a femtosecond pulse shaper eliminates the need for an interferometer setup, allows dispersion-free SPIDER operation and at the same time compression even of complex pulses. Beyond compression, the scheme allows precise phase control at the site of the microscopic experiment. We present the underlying principles, design considerations, and details of the experimental implementation, and show the successful operation of the shaper-assisted collinear (SAC) SPIDER to characterize, compress, and tailor broadband femtosecond pulses in situ. The reliability is demonstrated by comparison with independent cross-frequency-resolved optical gating measurement, and improved multiphoton imaging with SAC-SPIDER-compressed pulses is shown. Its simplicity and versatility make SAC-SPIDER an extremely useful tool for next-generation broadband nonlinear microscopy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, 'Nonlinear magic: multiphoton microscopy in the biosciences,' Nat. Biotechnol. 21, 1369-1377 (2003).
    [CrossRef] [PubMed]
  2. J. Squier and M. Muller, 'High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging,' Rev. Sci. Instrum. 72, 2855-2867 (2001).
    [CrossRef]
  3. G. J. Brakenhoff, M. Muller, and J. Squier, 'Femtosecond pulse width control in microscopy by two-photon absorption autocorrelation,' J. Microsc. 179, 253-260 (1995).
    [CrossRef]
  4. C. Soeller and M. B. Cannell, 'Construction of a two-photon microscope and optimisation of illumination pulse duration,' Pfluegers Arch. 432, 555-561 (1996).
    [CrossRef]
  5. R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, 'Characterization and optimization of a laser-scanning microscope in the femtosecond regime,' Appl. Phys. B 67, 87-94 (1998).
    [CrossRef]
  6. M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, 'Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,' J. Microsc. 191, 141-150 (1998).
    [CrossRef] [PubMed]
  7. A. M. Weiner, 'Femtosecond pulse shaping using spatial light modulators,' Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  8. D. Yelin, D. Meshulach, and Y. Silberberg, 'Adaptive femtosecond pulse compression,' Opt. Lett. 22, 1793-1795 (1997).
    [CrossRef]
  9. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, 'Femtosecond pulse shaping by an evolutionary algorithm with feedback,' Appl. Phys. B 65, 779-782 (1997).
    [CrossRef]
  10. D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, 'Evolutionary algorithms and their application to optimal control studies,' Phys. Rev. A 64, 023420 (2001).
    [CrossRef]
  11. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, 'Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,' Opt. Lett. 23, 1046-1048 (1998).
    [CrossRef]
  12. I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, E. J. Gualda, and D. Artigas, 'Ultrashort pulse characterisation with SHG collinear-FROG,' Opt. Express 12, 1169-1178 (2004).
    [CrossRef] [PubMed]
  13. I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, 'Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens,' Opt. Lett. 29, 2282-2284 (2004).
    [CrossRef] [PubMed]
  14. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, 'Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector,' Opt. Lett. 28, 278-280 (2003).
    [CrossRef] [PubMed]
  15. V. V. Lozovoy, I. Pastirk, and M. Dantus, 'Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,' Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  16. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, 'Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,' J. Opt. Soc. Am. B 23, 750-759 (2006).
    [CrossRef]
  17. C. Iaconis and I. A. Walmsley, 'Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,' Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  18. C. Iaconis and I. A. Walmsley, 'Self-referencing spectral interferometry for measuring ultrashort optical pulses,' IEEE J. Quantum Electron. 35, 501-509 (1999).
    [CrossRef]
  19. T. M. Shuman, M. E. Anderson, J. Bromage, C. Iaconis, L. Waxer, and I. A. Walmsley, 'Real-time SPIDER: ultrashort pulse characterization at 20Hz,' Opt. Express 5, 134-143 (1999).
    [CrossRef] [PubMed]
  20. B. von Vacano, T. Buckup, and M. Motzkus, 'In situ broadband pulse compression for multiphoton microscopy using a shaper-assisted collinear SPIDER,' Opt. Lett. 31, 1154-1156 (2006).
    [CrossRef]
  21. M. Takeda, H. Ina, and S. Kobayashi, 'Fourier-transform method of fringe-pattern analysis for computer-based tomography and interferometry,' J. Opt. Soc. Am. 72, 156-160 (1982).
    [CrossRef]
  22. P. Baum, S. Lochbrunner, and E. Riedle, 'Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,' Opt. Lett. 29, 210-212 (2004).
    [CrossRef] [PubMed]
  23. M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, 'The effects of noise on ultrashort-optical-pulse measurement using SPIDER,' Appl. Phys. B 70, S85-S93 (2000).
    [CrossRef]
  24. E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, 'Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,' Opt. Lett. 30, 326-328 (2005).
    [CrossRef] [PubMed]
  25. J. R. Birge, R. Ell, and F. X. Kartner, 'Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,' Opt. Lett. 31, 2063-2065 (2006).
    [CrossRef] [PubMed]
  26. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, 'Techniques for the characterization of sub-10-fs optical pulses: a comparison,' Appl. Phys. B 70, S67-S75 (2000).
    [CrossRef]
  27. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.-L. Kompa, 'Whither the future of controlling quantum phenomena?,' Science 288, 824-828 (2000).
    [CrossRef] [PubMed]
  28. W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, 'Coherent control for spectroscopy and manipulation of biological dynamics,' ChemPhysChem 6, 850-857 (2005).
    [CrossRef] [PubMed]
  29. D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, 'Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,' IEEE J. Quantum Electron. 35, 479-486 (1999).
    [CrossRef]
  30. A 3:1 beam splitter was chosen to generate the reference beam to maintain a sufficient power level for the creation of the desired supercontinuum spectrum. An optimal choice might be different for other applications; in our case it ensures high-enough pulse energies of the compressed test pulses in situ for microscopy.
  31. C. Dorrer, 'Influence of the calibration of the detector on spectral interferometry,' J. Opt. Soc. Am. B 16, 1160-1168 (1999).
    [CrossRef]
  32. J. Thornes, P. Poon, and M. E. Anderson, 'Single-iteration compression of femtosecond laser pulses,' J. Opt. Soc. Am. B 21, 1387-1390 (2004).
    [CrossRef]
  33. J. Wemans, G. Figueira, N. Lopes, and L. Cardoso, 'Self-referencing spectral phase interferometry for direct electric-field reconstruction with chirped pulses,' Opt. Lett. 31, 2217-2219 (2006).
    [CrossRef] [PubMed]
  34. T. Hornung, R. Meier, and M. Motzkus, 'Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,' Chem. Phys. Lett. 326, 445-453 (2000).
    [CrossRef]
  35. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, 'Multiphoton intrapulse interference 3: probing microscopic chemical environments,' J. Phys. Chem. A 108, 53-58 (2004).
    [CrossRef]
  36. J. P. Ogilvie, D. Debarre, X. Solinas, J. L. Martin, E. Beaurepaire, and M. Joffre, 'Use of coherent control for selective two-photon fluorescence microscopy in live organisms,' Opt. Express 14, 759-766 (2006).
    [CrossRef] [PubMed]
  37. N. Dudovich, D. Oron, and Y. Silberberg, 'Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,' Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  38. B. von Vacano, W. Wohlleben, and M. Motzkus, 'Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,' Opt. Lett. 31, 413-415 (2006).
    [CrossRef] [PubMed]
  39. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, 'Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,' Opt. Lett. 27, 1174-1176 (2002).
    [CrossRef]
  40. S. Linden, H. Giessen, and J. Kuhl, 'XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,' Phys. Status Solidi B 206, 119-124 (1998).
    [CrossRef]
  41. S. Linden, J. Kuhl, and H. Giessen, 'Amplitude and phase characterization of weak blue ultrashort pulses by downconversion,' Opt. Lett. 24, 569-571 (1999).
    [CrossRef]

2006 (6)

2005 (2)

E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, 'Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,' Opt. Lett. 30, 326-328 (2005).
[CrossRef] [PubMed]

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, 'Coherent control for spectroscopy and manipulation of biological dynamics,' ChemPhysChem 6, 850-857 (2005).
[CrossRef] [PubMed]

2004 (6)

2003 (2)

2002 (2)

2001 (2)

J. Squier and M. Muller, 'High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging,' Rev. Sci. Instrum. 72, 2855-2867 (2001).
[CrossRef]

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, 'Evolutionary algorithms and their application to optimal control studies,' Phys. Rev. A 64, 023420 (2001).
[CrossRef]

2000 (5)

A. M. Weiner, 'Femtosecond pulse shaping using spatial light modulators,' Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

T. Hornung, R. Meier, and M. Motzkus, 'Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,' Chem. Phys. Lett. 326, 445-453 (2000).
[CrossRef]

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, 'The effects of noise on ultrashort-optical-pulse measurement using SPIDER,' Appl. Phys. B 70, S85-S93 (2000).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, 'Techniques for the characterization of sub-10-fs optical pulses: a comparison,' Appl. Phys. B 70, S67-S75 (2000).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.-L. Kompa, 'Whither the future of controlling quantum phenomena?,' Science 288, 824-828 (2000).
[CrossRef] [PubMed]

1999 (5)

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, 'Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,' IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

C. Dorrer, 'Influence of the calibration of the detector on spectral interferometry,' J. Opt. Soc. Am. B 16, 1160-1168 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, 'Self-referencing spectral interferometry for measuring ultrashort optical pulses,' IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

T. M. Shuman, M. E. Anderson, J. Bromage, C. Iaconis, L. Waxer, and I. A. Walmsley, 'Real-time SPIDER: ultrashort pulse characterization at 20Hz,' Opt. Express 5, 134-143 (1999).
[CrossRef] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, 'Amplitude and phase characterization of weak blue ultrashort pulses by downconversion,' Opt. Lett. 24, 569-571 (1999).
[CrossRef]

1998 (5)

C. Iaconis and I. A. Walmsley, 'Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,' Opt. Lett. 23, 792-794 (1998).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, 'Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,' Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, 'Characterization and optimization of a laser-scanning microscope in the femtosecond regime,' Appl. Phys. B 67, 87-94 (1998).
[CrossRef]

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, 'Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,' J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

S. Linden, H. Giessen, and J. Kuhl, 'XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,' Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

1997 (2)

D. Yelin, D. Meshulach, and Y. Silberberg, 'Adaptive femtosecond pulse compression,' Opt. Lett. 22, 1793-1795 (1997).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, 'Femtosecond pulse shaping by an evolutionary algorithm with feedback,' Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

1996 (1)

C. Soeller and M. B. Cannell, 'Construction of a two-photon microscope and optimisation of illumination pulse duration,' Pfluegers Arch. 432, 555-561 (1996).
[CrossRef]

1995 (1)

G. J. Brakenhoff, M. Muller, and J. Squier, 'Femtosecond pulse width control in microscopy by two-photon absorption autocorrelation,' J. Microsc. 179, 253-260 (1995).
[CrossRef]

1982 (1)

Amat-Roldan, I.

Anderson, M. E.

Artigas, D.

Barty, C. P. J.

Baum, P.

Baumert, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, 'Femtosecond pulse shaping by an evolutionary algorithm with feedback,' Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Beaurepaire, E.

Birge, J. R.

Brakenhoff, G. J.

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, 'Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,' J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

G. J. Brakenhoff, M. Muller, and J. Squier, 'Femtosecond pulse width control in microscopy by two-photon absorption autocorrelation,' J. Microsc. 179, 253-260 (1995).
[CrossRef]

Brixner, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, 'Femtosecond pulse shaping by an evolutionary algorithm with feedback,' Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Bromage, J.

Buckup, T.

B. von Vacano, T. Buckup, and M. Motzkus, 'In situ broadband pulse compression for multiphoton microscopy using a shaper-assisted collinear SPIDER,' Opt. Lett. 31, 1154-1156 (2006).
[CrossRef]

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, 'Coherent control for spectroscopy and manipulation of biological dynamics,' ChemPhysChem 6, 850-857 (2005).
[CrossRef] [PubMed]

Cannell, M. B.

C. Soeller and M. B. Cannell, 'Construction of a two-photon microscope and optimisation of illumination pulse duration,' Pfluegers Arch. 432, 555-561 (1996).
[CrossRef]

Cardoso, L.

Cormack, I. G.

Dantus, M.

de Araujo, L. E. E

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, 'The effects of noise on ultrashort-optical-pulse measurement using SPIDER,' Appl. Phys. B 70, S85-S93 (2000).
[CrossRef]

de Vivie-Riedle, R.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.-L. Kompa, 'Whither the future of controlling quantum phenomena?,' Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Debarre, D.

Dela Cruz, J. M.

Dorrer, C.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, 'Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,' Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Ell, R.

Feurer, T.

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, 'Characterization and optimization of a laser-scanning microscope in the femtosecond regime,' Appl. Phys. B 67, 87-94 (1998).
[CrossRef]

Figueira, G.

Fittinghoff, D. N.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, 'Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,' IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, 'Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,' Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

Frey, S.

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, 'Evolutionary algorithms and their application to optimal control studies,' Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Gallmann, L.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, 'Techniques for the characterization of sub-10-fs optical pulses: a comparison,' Appl. Phys. B 70, S67-S75 (2000).
[CrossRef]

Gerber, G.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, 'Femtosecond pulse shaping by an evolutionary algorithm with feedback,' Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Giessen, H.

S. Linden, J. Kuhl, and H. Giessen, 'Amplitude and phase characterization of weak blue ultrashort pulses by downconversion,' Opt. Lett. 24, 569-571 (1999).
[CrossRef]

S. Linden, H. Giessen, and J. Kuhl, 'XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,' Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Gu, X.

Gualda, E. J.

Gunn, J. M.

Herek, J. L.

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, 'Coherent control for spectroscopy and manipulation of biological dynamics,' ChemPhysChem 6, 850-857 (2005).
[CrossRef] [PubMed]

Herzog, R.

Hornung, T.

T. Hornung, R. Meier, and M. Motzkus, 'Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,' Chem. Phys. Lett. 326, 445-453 (2000).
[CrossRef]

Iaconis, C.

Ina, H.

Joffre, M.

Kaplan, D.

Kartner, F. X.

Keller, U.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, 'Techniques for the characterization of sub-10-fs optical pulses: a comparison,' Appl. Phys. B 70, S67-S75 (2000).
[CrossRef]

Kimmel, M.

Kobayashi, S.

Kompa, K. L.

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, 'Evolutionary algorithms and their application to optimal control studies,' Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Kompa, K.-L.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.-L. Kompa, 'Whither the future of controlling quantum phenomena?,' Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Kosik, E. M.

E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, 'Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,' Opt. Lett. 30, 326-328 (2005).
[CrossRef] [PubMed]

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, 'The effects of noise on ultrashort-optical-pulse measurement using SPIDER,' Appl. Phys. B 70, S85-S93 (2000).
[CrossRef]

Kuhl, J.

S. Linden, J. Kuhl, and H. Giessen, 'Amplitude and phase characterization of weak blue ultrashort pulses by downconversion,' Opt. Lett. 24, 569-571 (1999).
[CrossRef]

S. Linden, H. Giessen, and J. Kuhl, 'XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,' Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Linden, S.

S. Linden, J. Kuhl, and H. Giessen, 'Amplitude and phase characterization of weak blue ultrashort pulses by downconversion,' Opt. Lett. 24, 569-571 (1999).
[CrossRef]

S. Linden, H. Giessen, and J. Kuhl, 'XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,' Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Lochbrunner, S.

Lopes, N.

Loza-Alvarez, P.

Lozovoy, V. V.

Martin, J. L.

Matuschek, N.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, 'Techniques for the characterization of sub-10-fs optical pulses: a comparison,' Appl. Phys. B 70, S67-S75 (2000).
[CrossRef]

Meier, R.

T. Hornung, R. Meier, and M. Motzkus, 'Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,' Chem. Phys. Lett. 326, 445-453 (2000).
[CrossRef]

Meshulach, D.

Millard, A. C.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, 'Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,' IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

Monmayrant, A.

Motzkus, M.

B. von Vacano, T. Buckup, and M. Motzkus, 'In situ broadband pulse compression for multiphoton microscopy using a shaper-assisted collinear SPIDER,' Opt. Lett. 31, 1154-1156 (2006).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, 'Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,' Opt. Lett. 31, 413-415 (2006).
[CrossRef] [PubMed]

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, 'Coherent control for spectroscopy and manipulation of biological dynamics,' ChemPhysChem 6, 850-857 (2005).
[CrossRef] [PubMed]

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, 'Evolutionary algorithms and their application to optimal control studies,' Phys. Rev. A 64, 023420 (2001).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.-L. Kompa, 'Whither the future of controlling quantum phenomena?,' Science 288, 824-828 (2000).
[CrossRef] [PubMed]

T. Hornung, R. Meier, and M. Motzkus, 'Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,' Chem. Phys. Lett. 326, 445-453 (2000).
[CrossRef]

Muller, M.

J. Squier and M. Muller, 'High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging,' Rev. Sci. Instrum. 72, 2855-2867 (2001).
[CrossRef]

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, 'Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,' IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, 'Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,' J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, 'Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,' Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

G. J. Brakenhoff, M. Muller, and J. Squier, 'Femtosecond pulse width control in microscopy by two-photon absorption autocorrelation,' J. Microsc. 179, 253-260 (1995).
[CrossRef]

Ogilvie, J. P.

Oksenhendler, T.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, 'Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,' Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

O'Shea, P.

Pastirk, I.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, 'Multiphoton intrapulse interference 3: probing microscopic chemical environments,' J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, 'Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,' Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

Poon, P.

Rabitz, H.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.-L. Kompa, 'Whither the future of controlling quantum phenomena?,' Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Radunsky, A. S.

Riedle, E.

Sauerbrey, R.

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, 'Characterization and optimization of a laser-scanning microscope in the femtosecond regime,' Appl. Phys. B 67, 87-94 (1998).
[CrossRef]

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, 'Femtosecond pulse shaping by an evolutionary algorithm with feedback,' Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Shreenath, A. P.

Shuman, T. M.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, 'Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,' Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

D. Yelin, D. Meshulach, and Y. Silberberg, 'Adaptive femtosecond pulse compression,' Opt. Lett. 22, 1793-1795 (1997).
[CrossRef]

Simon, U.

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, 'Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,' J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, 'Characterization and optimization of a laser-scanning microscope in the femtosecond regime,' Appl. Phys. B 67, 87-94 (1998).
[CrossRef]

Soeller, C.

C. Soeller and M. B. Cannell, 'Construction of a two-photon microscope and optimisation of illumination pulse duration,' Pfluegers Arch. 432, 555-561 (1996).
[CrossRef]

Solinas, X.

Squier, J.

J. Squier and M. Muller, 'High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging,' Rev. Sci. Instrum. 72, 2855-2867 (2001).
[CrossRef]

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, 'Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,' J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

G. J. Brakenhoff, M. Muller, and J. Squier, 'Femtosecond pulse width control in microscopy by two-photon absorption autocorrelation,' J. Microsc. 179, 253-260 (1995).
[CrossRef]

Squier, J. A.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, 'Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,' IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, 'Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,' Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

Steinmeyer, G.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, 'Techniques for the characterization of sub-10-fs optical pulses: a comparison,' Appl. Phys. B 70, S67-S75 (2000).
[CrossRef]

Strehle, M.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, 'Femtosecond pulse shaping by an evolutionary algorithm with feedback,' Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Sutter, D. H.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, 'Techniques for the characterization of sub-10-fs optical pulses: a comparison,' Appl. Phys. B 70, S67-S75 (2000).
[CrossRef]

Sweetser, J. N.

Takeda, M.

Thornes, J.

Tournois, P.

Trebino, R.

Vacano, B. von

von Vacano, B.

Walmsley, I. A.

Walowicz, K. A.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, 'Multiphoton intrapulse interference 3: probing microscopic chemical environments,' J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

Waxer, L.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, 'Nonlinear magic: multiphoton microscopy in the biosciences,' Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, 'Femtosecond pulse shaping using spatial light modulators,' Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Wemans, J.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, 'Nonlinear magic: multiphoton microscopy in the biosciences,' Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Windeler, R. S.

Wohlleben, W.

B. von Vacano, W. Wohlleben, and M. Motzkus, 'Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,' Opt. Lett. 31, 413-415 (2006).
[CrossRef] [PubMed]

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, 'Coherent control for spectroscopy and manipulation of biological dynamics,' ChemPhysChem 6, 850-857 (2005).
[CrossRef] [PubMed]

Wolleschensky, R.

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, 'Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,' J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, 'Characterization and optimization of a laser-scanning microscope in the femtosecond regime,' Appl. Phys. B 67, 87-94 (1998).
[CrossRef]

Xu, B.

Xu, L.

Yelin, D.

Zeek, E.

Zeidler, D.

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, 'Evolutionary algorithms and their application to optimal control studies,' Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, 'Nonlinear magic: multiphoton microscopy in the biosciences,' Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Appl. Phys. B (4)

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, 'Characterization and optimization of a laser-scanning microscope in the femtosecond regime,' Appl. Phys. B 67, 87-94 (1998).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, 'Femtosecond pulse shaping by an evolutionary algorithm with feedback,' Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, 'The effects of noise on ultrashort-optical-pulse measurement using SPIDER,' Appl. Phys. B 70, S85-S93 (2000).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, 'Techniques for the characterization of sub-10-fs optical pulses: a comparison,' Appl. Phys. B 70, S67-S75 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

T. Hornung, R. Meier, and M. Motzkus, 'Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,' Chem. Phys. Lett. 326, 445-453 (2000).
[CrossRef]

ChemPhysChem (1)

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, 'Coherent control for spectroscopy and manipulation of biological dynamics,' ChemPhysChem 6, 850-857 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, 'Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,' IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, 'Self-referencing spectral interferometry for measuring ultrashort optical pulses,' IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

J. Microsc. (2)

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, 'Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,' J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

G. J. Brakenhoff, M. Muller, and J. Squier, 'Femtosecond pulse width control in microscopy by two-photon absorption autocorrelation,' J. Microsc. 179, 253-260 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. A (1)

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, 'Multiphoton intrapulse interference 3: probing microscopic chemical environments,' J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, 'Nonlinear magic: multiphoton microscopy in the biosciences,' Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, 'Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,' Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (14)

S. Linden, J. Kuhl, and H. Giessen, 'Amplitude and phase characterization of weak blue ultrashort pulses by downconversion,' Opt. Lett. 24, 569-571 (1999).
[CrossRef]

I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, 'Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens,' Opt. Lett. 29, 2282-2284 (2004).
[CrossRef] [PubMed]

A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, 'Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector,' Opt. Lett. 28, 278-280 (2003).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, 'Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,' Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

C. Iaconis and I. A. Walmsley, 'Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,' Opt. Lett. 23, 792-794 (1998).
[CrossRef]

D. Yelin, D. Meshulach, and Y. Silberberg, 'Adaptive femtosecond pulse compression,' Opt. Lett. 22, 1793-1795 (1997).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, 'Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,' Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

B. von Vacano, T. Buckup, and M. Motzkus, 'In situ broadband pulse compression for multiphoton microscopy using a shaper-assisted collinear SPIDER,' Opt. Lett. 31, 1154-1156 (2006).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, 'Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,' Opt. Lett. 29, 210-212 (2004).
[CrossRef] [PubMed]

E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, 'Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,' Opt. Lett. 30, 326-328 (2005).
[CrossRef] [PubMed]

J. R. Birge, R. Ell, and F. X. Kartner, 'Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,' Opt. Lett. 31, 2063-2065 (2006).
[CrossRef] [PubMed]

B. von Vacano, W. Wohlleben, and M. Motzkus, 'Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,' Opt. Lett. 31, 413-415 (2006).
[CrossRef] [PubMed]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, 'Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,' Opt. Lett. 27, 1174-1176 (2002).
[CrossRef]

J. Wemans, G. Figueira, N. Lopes, and L. Cardoso, 'Self-referencing spectral phase interferometry for direct electric-field reconstruction with chirped pulses,' Opt. Lett. 31, 2217-2219 (2006).
[CrossRef] [PubMed]

Pfluegers Arch. (1)

C. Soeller and M. B. Cannell, 'Construction of a two-photon microscope and optimisation of illumination pulse duration,' Pfluegers Arch. 432, 555-561 (1996).
[CrossRef]

Phys. Rev. A (1)

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, 'Evolutionary algorithms and their application to optimal control studies,' Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Phys. Status Solidi B (1)

S. Linden, H. Giessen, and J. Kuhl, 'XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,' Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Rev. Sci. Instrum. (2)

A. M. Weiner, 'Femtosecond pulse shaping using spatial light modulators,' Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

J. Squier and M. Muller, 'High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging,' Rev. Sci. Instrum. 72, 2855-2867 (2001).
[CrossRef]

Science (1)

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.-L. Kompa, 'Whither the future of controlling quantum phenomena?,' Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Other (1)

A 3:1 beam splitter was chosen to generate the reference beam to maintain a sufficient power level for the creation of the desired supercontinuum spectrum. An optimal choice might be different for other applications; in our case it ensures high-enough pulse energies of the compressed test pulses in situ for microscopy.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Creation of double pulses with the femtosecond pulse shaper. (a) Shaping target M S L M ( t ) in the time domain for the generation of the desired identical copies of the input pulse with a separation τ = 600 fs in this case. (b) Corresponding frequency domain modulation M ̃ S L M ( ω ) with amplitude A S L M ( ω ) and phase φ S L M ( ω ) as realized by the pixilated SLM in the Fourier plane of the 4 f pulse shaper. For clarity, only a section of the 640 pixel range is shown. For the given case ( τ = 600 fs ) , it can be seen that each period is rendered by 18 pixels, which is well above the Nyquist limit (see text).

Fig. 2
Fig. 2

Experimental setup. The femtosecond oscillator output beam is sent through a Faraday isolator (FI) and then split into two parts. Seventy-five percent of the energy is used to generate supercontinuum in a PCF sent into the femtosecond pulse shaper (G1-2, gratings; SM1-2, spherical mirrors; SLM, spatial light modulator with 640 pixels for phase and amplitude modulation). The remaining 25% of oscillator energy is used to provide an orthogonally polarized reference beam, which is chirped ( ϕ ) for the SPIDER measurement. Both beams are collinearly superimposed and focused (MO1-2, microscope objectives) into a type-II BBO crystal at the position of the sample. The SFG is finally analyzed in a spectrograph (FL, focusing lens). The hatched beam indicates an alternative path for in situ XFROG measurements, where the reference beam is not chirped, but delayed by a variable time Δ t .

Fig. 3
Fig. 3

Experimental confirmation of the double-pulse shaping by frequency-resolved cross correlation (XFROG, for details see Section 6). Shown are data sets for an (a) unshaped pulse and doublets with (b) τ = 200 , (c) 800, and (d) 1600 fs .

Fig. 4
Fig. 4

Calibration of the spectral shear with SAC-SPIDER. Shown are two spectra created by sum-frequency mixing of a single test pulse replica delayed by the shaper to 300 fs ( + τ 2 , solid curve) and 300 fs ( τ 2 , dashed curve and shaded area), respectively, with the chirped reference pulse.

Fig. 5
Fig. 5

τ calibration. (a) SHG-calibration interferograms for different separations of the test pulse doublet. (b) Phase differences retrieved from the calibration interferograms corresponding to the linear term introduced by τ (see text for details).

Fig. 6
Fig. 6

In situ pulse compression with SAC SPIDER. Shown are (a)–(c) the pulse spectra, interferograms, and phases in the frequency domain, and (d)–(f) reconstructed temporal pulse profiles and phases. From left to right, the compression sequence can be followed with (a) and (d) the uncompressed case, (b) and (e) the first, and (c) and (f) the second compression iteration. (a)–(c) The spectral phases are shown as thick solid curves, the shaper correction phase φ c o r r ( ω ) as squares, interferograms as thin solid curves, and the fundamental pulse spectrum as the gray shaded area. All frequency domain data are shown relative to the pulse central frequency ω rel = 0 . (d)–(f) The temporal pulse intensity is shown as the gray shaded area with a thin contour, the temporal phase as a thick solid curve. Note that the uncompressed pulse in (d) and the compressed pulses in (e) and (f) are shown with different time scales for clarity.

Fig. 7
Fig. 7

Retrieval of complex phases. In addition to the compressed pulse, arbitrary phase modulations φ m o d ( ω ) were applied: (a) quadratic phase with 2000 fs 2 , (b) and (c) sinusoidal phases with π 2 phase offset, (d) rectangular phase indentation. φ m o d ( ω ) is always shown as a thick solid curve, and the retrieved SAC-SPIDER phases as crosses. For comparison, the pulse spectrum is indicated as the gray shaded area.

Fig. 8
Fig. 8

Comparison between SAC-SPIDER and XFROG methods. Both methods retrieved the same phase for (a)–(c) uncompressed and (d)–(f) the compressed supercontinuum pulses. The experimental XFROG traces [(a) and (d)] were reconstructed [(b) and (e), respectively] and the spectral phase was retrieved [crosses in (c) and (f), respectively]. The corresponding phases measured with SAC-SPIDER are shown as solid lines and the test pulse spectrum is indicated as the gray shaded area. Note that the SAC-SPIDER phase shown in (c) is obtained after two iterations (compare Fig. 6).

Fig. 9
Fig. 9

Application example of SAC-SPIDER compressed pulses in two-photon fluorescence microscopy. (a) Two-photon fluorescence spectra measured in a Rhodamine B labeled polymer particle with uncompressed (solid curve, hatched in dark gray) and compressed (dashed curve, hatched in light gray) pulses. Imaging of fluorescent microparticles with (b) uncompressed and (c) compressed pulses. The integrated fluorescence intensity is normalized on the same scale.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ω = τ GDD .
E out ( t ) = E in ( t ) M S L M ( t ) = + d τ E in ( τ ) 1 2 [ δ ( t + τ 2 ) + δ ( t τ 2 ) ] .
E ̃ out ( ω ) = E ̃ in ( ω ) M ̃ S L M ( ω ) ,
τ < π N 2 Δ ω ,

Metrics