Abstract

We present measurements and calculations of the terahertz (THz) electric field measured in the near field of a metal tip used in THz apertureless near-field optical microscopy (THz-ANSOM). An analytical model in which we treat the metal tip as a linear wire antenna allows us to predict almost all of the features observed in the measurements, such as the relatively slow decay of the near-field amplitude when the tip-crystal separation increases. When the tip-crystal separation is modulated, in conjunction with lock-in detection at the modulation frequency, a smaller THz spot size is observed underneath the tip. A comparison with analytical expressions shows that in this case the electric field originates predominantly from the tip apex, with negligible contributions from the tip shaft. In the unmodulated case, the observed signal is the spatial integral of the electro-optic (EO) effect over the interaction length between the THz near field and the probe laser pulse. In the modulated case, to a good approximation, we find that the signal is proportional to the value of the THz near field at the surface of the EO crystal only.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription