Abstract

Devices in periodically poled glass must have a large periodic variation of the built-in field. We show that the periodic variation can be severely degraded by charge dynamics taking place at the external (glass–air) interface or at internal (glass–glass) interfaces if the interfaces have imperfections. The problem of the external interface can be solved by poling with periodic electrodes that are buried inside the glass, in many cases improving the poling efficiency dramatically. Internal interfaces can be addressed by the proper choice of waveguide design and processing. Without poling the device, one can reveal the existence of imperfect interfaces by use of electric field induced second-harmonic generation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).
  2. A. Kudlinski, G. Martinelli, and Y. Quiquempois, 'Time evolution of second-order nonlinear profiles induced within thermally poled silica samples,' Opt. Lett. 30, 1039-1041 (2005).
    [CrossRef] [PubMed]
  3. D. Faccio, V. Pruneri, and P. Kazansky, 'Dynamics of the second-order nonlinearity in thermally poled silica glass,' Appl. Phys. Lett. 79, 2687-2689 (2001).
    [CrossRef]
  4. N. Myren and W. Margulis, 'Time evolution of frozen-in field during poling of fiber with alloy electrodes,' Opt. Express 13, 3438-3444 (2005).
    [CrossRef] [PubMed]
  5. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, 'Mechanism for thermal poling in twin-hole silicate fibers,' J. Opt. Soc. Am. B 19, 870-874 (2002).
    [CrossRef]
  6. F. C. Garcia, L. Vogelaar, and R. Kashyap, 'Poling of a channel waveguide,' Opt. Express 11, 3041-3047 (2003).
    [CrossRef] [PubMed]
  7. Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, 'Poling effect of a charge-trapping layer in glass waveguides,' Appl. Phys. B 78, 371-375 (2004).
    [CrossRef]
  8. Y. Quiquempois, N. Godbout, and S. Lacroix, 'Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,' Phys. Rev. A 71, 063809 (2005).
    [CrossRef]
  9. H. An and S. Fleming, 'Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers,' Opt. Express 13, 3500-3505 (2005).
    [CrossRef] [PubMed]
  10. A. Ozcan, M. Digonnet, G. Kino, F. Ay, and A. Aydinli, 'Characterization of thermally poled germanosilicate thin films,' Opt. Express 12, 4698-4708 (2004).
    [CrossRef] [PubMed]
  11. S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, and H. Niu, 'Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide,' Opt. Express 13, 7091-7096 (2005).
    [CrossRef] [PubMed]
  12. J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, 'Planar glass devices for efficient periodic poling,' Opt. Express 13, 8514-8519 (2005).
    [CrossRef] [PubMed]
  13. R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, 'Phase-matched second-harmonic generation by periodic poling of fused silica,' Appl. Phys. Lett. 64, 1332-1334 (1994).
    [CrossRef]
  14. V. Pruneri, G. Bonfrate, P. Kazansky, D. Richardson, N. Broderick, J. De Sandro, C. Simonneau, P. Vidakovic, and J. Levenson, 'Greater than 20%-efficient frequency doubling of 1532 nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,' Opt. Lett. 24, 208-210 (1999).
    [CrossRef]
  15. C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.
  16. A. C. Adams, 'Dielectric and polysilicon film deposition,' in VLSI Technology, S.M.Sze, ed. (McGraw-Hill, 1988).
  17. C. Marckmann, R. Shim, Y. Ren, and M. Kristensen, 'Interpretation of high poling effects with short lifetimes,' in Proceedings of the 11th European Conference on Integrated Optics (ECIO, 2003), Vol. 1, pp. 301-304.

2005

2004

A. Ozcan, M. Digonnet, G. Kino, F. Ay, and A. Aydinli, 'Characterization of thermally poled germanosilicate thin films,' Opt. Express 12, 4698-4708 (2004).
[CrossRef] [PubMed]

Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, 'Poling effect of a charge-trapping layer in glass waveguides,' Appl. Phys. B 78, 371-375 (2004).
[CrossRef]

2003

2002

2001

D. Faccio, V. Pruneri, and P. Kazansky, 'Dynamics of the second-order nonlinearity in thermally poled silica glass,' Appl. Phys. Lett. 79, 2687-2689 (2001).
[CrossRef]

1999

1998

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).

1994

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, 'Phase-matched second-harmonic generation by periodic poling of fused silica,' Appl. Phys. Lett. 64, 1332-1334 (1994).
[CrossRef]

Adams, A. C.

A. C. Adams, 'Dielectric and polysilicon film deposition,' in VLSI Technology, S.M.Sze, ed. (McGraw-Hill, 1988).

An, H.

Ay, F.

Aydinli, A.

Blazkiewicz, P.

Bonfrate, G.

Broderick, N.

Canagasabey, A.

C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.

Carvalho, I.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).

Chao, S.

Chen, H.-Y.

Codemard, C.

C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.

Corbari, C.

C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.

De Sandro, J.

Digonnet, M.

Faccio, D.

D. Faccio, V. Pruneri, and P. Kazansky, 'Dynamics of the second-order nonlinearity in thermally poled silica glass,' Appl. Phys. Lett. 79, 2687-2689 (2001).
[CrossRef]

Fage-Pedersen, J.

Fleming, S.

Garcia, F.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).

Garcia, F. C.

Godbout, N.

Y. Quiquempois, N. Godbout, and S. Lacroix, 'Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,' Phys. Rev. A 71, 063809 (2005).
[CrossRef]

Hering, E.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).

Ibsen, M.

C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.

Jacobsen, R.

J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, 'Planar glass devices for efficient periodic poling,' Opt. Express 13, 8514-8519 (2005).
[CrossRef] [PubMed]

Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, 'Poling effect of a charge-trapping layer in glass waveguides,' Appl. Phys. B 78, 371-375 (2004).
[CrossRef]

Kashyap, R.

F. C. Garcia, L. Vogelaar, and R. Kashyap, 'Poling of a channel waveguide,' Opt. Express 11, 3041-3047 (2003).
[CrossRef] [PubMed]

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, 'Phase-matched second-harmonic generation by periodic poling of fused silica,' Appl. Phys. Lett. 64, 1332-1334 (1994).
[CrossRef]

Kazansky, P.

D. Faccio, V. Pruneri, and P. Kazansky, 'Dynamics of the second-order nonlinearity in thermally poled silica glass,' Appl. Phys. Lett. 79, 2687-2689 (2001).
[CrossRef]

V. Pruneri, G. Bonfrate, P. Kazansky, D. Richardson, N. Broderick, J. De Sandro, C. Simonneau, P. Vidakovic, and J. Levenson, 'Greater than 20%-efficient frequency doubling of 1532 nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,' Opt. Lett. 24, 208-210 (1999).
[CrossRef]

C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.

Kino, G.

Kristensen, M.

J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, 'Planar glass devices for efficient periodic poling,' Opt. Express 13, 8514-8519 (2005).
[CrossRef] [PubMed]

Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, 'Poling effect of a charge-trapping layer in glass waveguides,' Appl. Phys. B 78, 371-375 (2004).
[CrossRef]

C. Marckmann, R. Shim, Y. Ren, and M. Kristensen, 'Interpretation of high poling effects with short lifetimes,' in Proceedings of the 11th European Conference on Integrated Optics (ECIO, 2003), Vol. 1, pp. 301-304.

Kudlinski, A.

Lacroix, S.

Y. Quiquempois, N. Godbout, and S. Lacroix, 'Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,' Phys. Rev. A 71, 063809 (2005).
[CrossRef]

Laurell, F.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).

Lesche, B.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).

Levenson, J.

Marckmann, C.

Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, 'Poling effect of a charge-trapping layer in glass waveguides,' Appl. Phys. B 78, 371-375 (2004).
[CrossRef]

C. Marckmann, R. Shim, Y. Ren, and M. Kristensen, 'Interpretation of high poling effects with short lifetimes,' in Proceedings of the 11th European Conference on Integrated Optics (ECIO, 2003), Vol. 1, pp. 301-304.

Margulis, W.

N. Myren and W. Margulis, 'Time evolution of frozen-in field during poling of fiber with alloy electrodes,' Opt. Express 13, 3438-3444 (2005).
[CrossRef] [PubMed]

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).

Martinelli, G.

Mckee, P. F.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, 'Phase-matched second-harmonic generation by periodic poling of fused silica,' Appl. Phys. Lett. 64, 1332-1334 (1994).
[CrossRef]

Mezzapesa, F.

C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.

Myren, N.

Nilsson, J.

C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.

Niu, H.

Ozcan, A.

Pruneri, V.

Quiquempois, Y.

Y. Quiquempois, N. Godbout, and S. Lacroix, 'Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,' Phys. Rev. A 71, 063809 (2005).
[CrossRef]

A. Kudlinski, G. Martinelli, and Y. Quiquempois, 'Time evolution of second-order nonlinear profiles induced within thermally poled silica samples,' Opt. Lett. 30, 1039-1041 (2005).
[CrossRef] [PubMed]

Ren, Y.

Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, 'Poling effect of a charge-trapping layer in glass waveguides,' Appl. Phys. B 78, 371-375 (2004).
[CrossRef]

C. Marckmann, R. Shim, Y. Ren, and M. Kristensen, 'Interpretation of high poling effects with short lifetimes,' in Proceedings of the 11th European Conference on Integrated Optics (ECIO, 2003), Vol. 1, pp. 301-304.

Richardson, D.

Rogers, D. C.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, 'Phase-matched second-harmonic generation by periodic poling of fused silica,' Appl. Phys. Lett. 64, 1332-1334 (1994).
[CrossRef]

Shih, C. T.

Shim, R.

C. Marckmann, R. Shim, Y. Ren, and M. Kristensen, 'Interpretation of high poling effects with short lifetimes,' in Proceedings of the 11th European Conference on Integrated Optics (ECIO, 2003), Vol. 1, pp. 301-304.

Simonneau, C.

Valente, L. Guedes

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).

Veldhuis, G. J.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, 'Phase-matched second-harmonic generation by periodic poling of fused silica,' Appl. Phys. Lett. 64, 1332-1334 (1994).
[CrossRef]

Vidakovic, P.

Vogelaar, L.

Wang, Z.-W.

Wong, D.

Xu, W.

Yang, Y.-H.

Appl. Phys. B

Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, 'Poling effect of a charge-trapping layer in glass waveguides,' Appl. Phys. B 78, 371-375 (2004).
[CrossRef]

Appl. Phys. Lett.

D. Faccio, V. Pruneri, and P. Kazansky, 'Dynamics of the second-order nonlinearity in thermally poled silica glass,' Appl. Phys. Lett. 79, 2687-2689 (2001).
[CrossRef]

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, 'Phase-matched second-harmonic generation by periodic poling of fused silica,' Appl. Phys. Lett. 64, 1332-1334 (1994).
[CrossRef]

J. Opt. Soc. Am. B

MRS Bull.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, 'Poled glasses,' MRS Bull. 23, 31-35 (1998).

Opt. Express

Opt. Lett.

Phys. Rev. A

Y. Quiquempois, N. Godbout, and S. Lacroix, 'Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,' Phys. Rev. A 71, 063809 (2005).
[CrossRef]

Other

C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. Kazansky, 'All-fiber frequency conversion in long periodically poled silica fibers,' Optical Fiber Communication Conference (Optical Society of America, 2005), Vol. 6.

A. C. Adams, 'Dielectric and polysilicon film deposition,' in VLSI Technology, S.M.Sze, ed. (McGraw-Hill, 1988).

C. Marckmann, R. Shim, Y. Ren, and M. Kristensen, 'Interpretation of high poling effects with short lifetimes,' in Proceedings of the 11th European Conference on Integrated Optics (ECIO, 2003), Vol. 1, pp. 301-304.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of waveguide batches. In a final step, periodic electrodes were deposited on top of the waveguides shown here, and selected chips were then covered with a PECVD silica cap.

Fig. 2
Fig. 2

Setup for SHG and EFISH measurements. cw light from a tunable Ti:sapphire laser is fiber coupled into the waveguide, and the F and SH output beams are collected in a multimode fiber (core diameter 62.5 μ m , assumed collection efficiency 100%). The optical power in the waveguide is measured either in a power meter (pump power P ω ) or in an optical spectrum analyzer (SH power P 2 ω ). The fiber coupling is made with manual x y z stages.

Fig. 3
Fig. 3

EFISH series on devices from batch E: SH power as a function of time when abruptly changing the voltage on the periodic electrode between values V app { 0 , 100 , 250 , ± 500 , ± 2000 } V . The devices are (a) without capping glass on the electrode, and (b) with 4.7 μ m capping glass on top of the electrode. The “voltage-on” periods are separated by zero-voltage intervals that last 30 s or longer. The green horizontal lines, scaled ad hoc in the vertical direction, indicate the SH levels that would be expected from a quadratic dependence on the applied voltage.

Fig. 4
Fig. 4

Same as Fig. 3 but for devices from batches C and D, both with glass-encapsulated electrodes.

Fig. 5
Fig. 5

SEM picture of a waveguide from batch B (cleaved end facet). At very close inspection, one can see the fold lines in the PECVD cladding glass as well as the interfaces between the core glass and the PECVD cladding. In the inset, the fold lines are indicated by the two dashed curves (red) extending from the SiON core to the upper surface, and the interfaces are indicated by the other dashed curves (white).

Metrics