Abstract

We demonstrated that a 17.6THz pulselike intensity modulation resulted from the coherent superposition of multifrequency continuous-wave emissions generated from a hydrogen-filled high-finesse cavity through a cascade-stimulated Raman scattering process. We pointed out that the complete phase-locked operation was hindered by the intracavity dispersion that caused nonequal separations between adjacent emission lines.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. G. Nuss, 'Imaging with terahertz waves,' Opt. Lett. 20, 1716-1718 (1995).
    [CrossRef] [PubMed]
  2. A. Hasegawa, 'Ultrahigh-speed optical communications,' Phys. Plasmas 8, 1763-1773 (2001).
    [CrossRef]
  3. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
    [CrossRef] [PubMed]
  4. S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, 'Terahertz-rate optical pulse generation from a passively mode-locked semiconductor laser diode,' Opt. Lett. 19, 834-836 (1994).
    [CrossRef] [PubMed]
  5. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, 'Terahertz repetition frequencies from harminic mode-locked monolithic compound-cavity laser diodes,' Appl. Phys. Lett. 78, 3571-3573 (2001).
    [CrossRef]
  6. M. Hyodo, K. S. Abedin, and N. Onodera, 'Fourier synthesis of 1.8-THz optical-pulse trains by phase locking of three independent semiconductor lasers,' Opt. Lett. 26, 340-342 (2001).
    [CrossRef]
  7. Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
    [CrossRef]
  8. S. E. Harris and A. V. Sokolov, 'Subfemtosecond pulse generation by molecular modulation,' Phys. Rev. Lett. 81, 2894-2897 (1998).
    [CrossRef]
  9. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904 (2005).
    [CrossRef] [PubMed]
  10. M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, 'Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,' Opt. Express 13, 5628-5634 (2005).
    [CrossRef] [PubMed]
  11. K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,' Phys. Rev. Lett. 87, 223901 (2001).
    [CrossRef] [PubMed]
  12. K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
    [CrossRef]
  13. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, 'Continuous-wave Raman laser in H2,' Opt. Lett. 23, 367-369 (1998).
    [CrossRef]
  14. T. Hattori, Y. Kawashima, M. Daikoku, H. Inoue, and H. Nakatsuka, 'Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube,' Jpn. J. Appl. Phys., Part 1 39, L809-L811 (2000).
    [CrossRef]
  15. G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 1999).
  16. R. W. Minck, E. E. Hagenlocker, and W. G. Rado, 'Stimulated pure rotational Raman scattering in deuterium,' Phys. Rev. Lett. 17, 229-231 (1966).
    [CrossRef]
  17. K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, 'Performance and design of an off-resonant continuous-wave Raman laser,' J. Opt. Soc. Am. B 15, 1667-1673 (1998).
    [CrossRef]
  18. The longitudinal modes contributing to the generation of the Stokes emissions differed between the spectrum shown in Fig. 2(a) and that shown in Fig. 3(b). Owing to the bandwidth of a Raman gain, the efficiency for both Stokes emissions varied depending on the related longitudinal modes even when the pump power was constant.
  19. C. Spielmann, L. Xu, and F. Krausz, 'Measurement of interferometric autocorrelations: comment,' Appl. Opt. 36, 2523-2525 (1997).
    [CrossRef] [PubMed]
  20. We used the formula described in E. R. Peck and S. Huang, 'Refractivity and dispersion of hydrogen in the visible and near infrared,' J. Opt. Soc. Am. 67, 1550-1554 (1977) to calculate the difference between Δvps1 and Δνs1−s2. At the wavelength of P (770.0 nm), n=1.000137506, and dn/dλ=−4.67008. At the wavelength of S1 (806.5nm), n=1.000137345, and dn/dλ=−4.04611. At the wavelength of S2 (846.5nm), n=1.000137198 and dn/dλ=−3.50354.
    [CrossRef]
  21. We estimate that the suppression of the difference between Δvps1 and Δνs1−s2 below the linewidth of a longitudinal mode of a high-finesse cavity (~500kHz) over a range of 70THz, which includes five Raman emissions, needs the third-order dispersion to be less than 0.5fs3.
  22. R. W. Boyd, Nonlinear Optics (Academic, 2003).

2006

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

2005

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, 'Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,' Opt. Express 13, 5628-5634 (2005).
[CrossRef] [PubMed]

2001

K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,' Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

A. Hasegawa, 'Ultrahigh-speed optical communications,' Phys. Plasmas 8, 1763-1773 (2001).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, 'Terahertz repetition frequencies from harminic mode-locked monolithic compound-cavity laser diodes,' Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, 'Fourier synthesis of 1.8-THz optical-pulse trains by phase locking of three independent semiconductor lasers,' Opt. Lett. 26, 340-342 (2001).
[CrossRef]

2000

T. Hattori, Y. Kawashima, M. Daikoku, H. Inoue, and H. Nakatsuka, 'Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube,' Jpn. J. Appl. Phys., Part 1 39, L809-L811 (2000).
[CrossRef]

1999

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

1998

1997

1995

1994

1977

1966

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, 'Stimulated pure rotational Raman scattering in deuterium,' Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Abedin, K. S.

Arahira, S.

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Brasseur, J. K.

Carlsten, J. L.

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Daikoku, M.

T. Hattori, Y. Kawashima, M. Daikoku, H. Inoue, and H. Nakatsuka, 'Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube,' Jpn. J. Appl. Phys., Part 1 39, L809-L811 (2000).
[CrossRef]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Eshima, C.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

Hagenlocker, E. E.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, 'Stimulated pure rotational Raman scattering in deuterium,' Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Harris, S. E.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

S. E. Harris and A. V. Sokolov, 'Subfemtosecond pulse generation by molecular modulation,' Phys. Rev. Lett. 81, 2894-2897 (1998).
[CrossRef]

Hasegawa, A.

A. Hasegawa, 'Ultrahigh-speed optical communications,' Phys. Plasmas 8, 1763-1773 (2001).
[CrossRef]

Hattori, T.

T. Hattori, Y. Kawashima, M. Daikoku, H. Inoue, and H. Nakatsuka, 'Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube,' Jpn. J. Appl. Phys., Part 1 39, L809-L811 (2000).
[CrossRef]

He, G. S.

G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 1999).

Hirakawa, Y.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,' Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Hiroishi, J.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Hu, B. B.

Huang, S.

Hyodo, M.

Ihara, K.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

Imasaka, T.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,' Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Inoue, H.

T. Hattori, Y. Kawashima, M. Daikoku, H. Inoue, and H. Nakatsuka, 'Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube,' Jpn. J. Appl. Phys., Part 1 39, L809-L811 (2000).
[CrossRef]

Kamitomo, S.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

Katsuragawa, M.

Kawashima, Y.

T. Hattori, Y. Kawashima, M. Daikoku, H. Inoue, and H. Nakatsuka, 'Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube,' Jpn. J. Appl. Phys., Part 1 39, L809-L811 (2000).
[CrossRef]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Krausz, F.

Kunii, T.

Liu, S. H.

G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 1999).

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Marsh, J. H.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, 'Terahertz repetition frequencies from harminic mode-locked monolithic compound-cavity laser diodes,' Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Matsui, Y.

McDougall, S. D.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, 'Terahertz repetition frequencies from harminic mode-locked monolithic compound-cavity laser diodes,' Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Meng, L.

Minck, R. W.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, 'Stimulated pure rotational Raman scattering in deuterium,' Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Misawa, K.

Nakatsuka, H.

T. Hattori, Y. Kawashima, M. Daikoku, H. Inoue, and H. Nakatsuka, 'Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube,' Jpn. J. Appl. Phys., Part 1 39, L809-L811 (2000).
[CrossRef]

Namiki, S.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Nuss, M. G.

Ogawa, Y.

Onodera, N.

Onose, T.

Oshiba, S.

Ozeki, Y.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Peck, E. R.

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Rado, W. G.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, 'Stimulated pure rotational Raman scattering in deuterium,' Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Repasky, K. S.

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Sakano, M.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Shinzen, K.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,' Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Shverdin, M. Y.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Sokolov, A. V.

S. E. Harris and A. V. Sokolov, 'Subfemtosecond pulse generation by molecular modulation,' Phys. Rev. Lett. 81, 2894-2897 (1998).
[CrossRef]

Spielmann, C.

Street, M. W.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, 'Terahertz repetition frequencies from harminic mode-locked monolithic compound-cavity laser diodes,' Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Suguzaki, R.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Takasaka, S.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Thayne, I. G.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, 'Terahertz repetition frequencies from harminic mode-locked monolithic compound-cavity laser diodes,' Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Walker, D. R.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Xu, L.

Yagi, T.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Yanson, D. A.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, 'Terahertz repetition frequencies from harminic mode-locked monolithic compound-cavity laser diodes,' Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Yavuz, D. D.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Yin, G. Y.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Yokoyama, K.

Zaitsu, S.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, 'Terahertz repetition frequencies from harminic mode-locked monolithic compound-cavity laser diodes,' Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Molecular-optic modulator,' Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

Electron. Lett.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, 'Generation of 1THz repetition rate, 97fs optical pulse train based on comb-like profiled fibre,' Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys., Part 1

T. Hattori, Y. Kawashima, M. Daikoku, H. Inoue, and H. Nakatsuka, 'Autocorrelation measurement of femtosecond optical pulses based on two-photon photoemission in a photomultiplier tube,' Jpn. J. Appl. Phys., Part 1 39, L809-L811 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Plasmas

A. Hasegawa, 'Ultrahigh-speed optical communications,' Phys. Plasmas 8, 1763-1773 (2001).
[CrossRef]

Phys. Rev. Lett.

K. Shinzen, Y. Hirakawa, and T. Imasaka, 'Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,' Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

S. E. Harris and A. V. Sokolov, 'Subfemtosecond pulse generation by molecular modulation,' Phys. Rev. Lett. 81, 2894-2897 (1998).
[CrossRef]

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, 'Stimulated pure rotational Raman scattering in deuterium,' Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Science

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, 'Nonlinear optics for high-speed digital information processing,' Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Other

The longitudinal modes contributing to the generation of the Stokes emissions differed between the spectrum shown in Fig. 2(a) and that shown in Fig. 3(b). Owing to the bandwidth of a Raman gain, the efficiency for both Stokes emissions varied depending on the related longitudinal modes even when the pump power was constant.

G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 1999).

We estimate that the suppression of the difference between Δvps1 and Δνs1−s2 below the linewidth of a longitudinal mode of a high-finesse cavity (~500kHz) over a range of 70THz, which includes five Raman emissions, needs the third-order dispersion to be less than 0.5fs3.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Transmission spectrum of cavity mirrors. The incident angle is normal to the surface. (b) Transmission spectrum of the cavity. The wavelength of the input laser is 770.0 nm . The instantaneous linewidth of the input laser is sufficiently small ( < 10 kHz ) .

Fig. 2
Fig. 2

(a) Spectrum of an output beam from the Raman cavity. (b) Near-field patterns of the output pump, first Stokes, and second Stokes beams.

Fig. 3
Fig. 3

(a) Autocorrelation trace of an output beam from the Raman cavity. (b) The spectrum of the measured beam is also shown. The longitudinal mode contributing to the Stokes emissions was different from those shown in Fig. 2a, causing the change of the output spectrum.

Fig. 4
Fig. 4

Calculated autocorrelation traces from the spectrum shown in Fig. 3a. (a) The case in which two replica pulses have the same envelope. (b) Additional GDD arising from a silica plate is provided to only one replica pulse.

Fig. 5
Fig. 5

Longitudinal modes of the optical cavity (a) without and (b) with intracavity dispersion. The profiles of the Raman gain and the modes that contribute to the Raman lasing are also shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν p s 1 = Δ ν s 1 s 2 .
FSR ( λ ) = c 2 L 1 n ( λ ) λ [ d n ( λ ) d λ ] ,

Metrics