Abstract

We report quasi-one-optical-cycle pulse compression of the ultrabroadband white-light continuum generated using both induced-phase modulation (IPM) and self-phase modulation (SPM) in a 3.0 atom Ar-gas-filled hollow fiber. Fundamental and second harmonic waves of amplified 30fs Ti:sapphire laser pulses were irradiated into a 37cm hollow fiber with an inner diameter of 140μm. When the two pulses were temporally overlapped in the hollow fiber, the white-light continuum with the wavelength range of 3501050nm was generated. The spectral phase of the white-light continuum was measured by a modified spectral interferometry for direct electric-field reconstruction, and quasi-automatic feedback chirp compensation was carried out using a programmable liquid-crystal spatial light modulator placed on the Fourier plane of a 4-f system. As a result, 2.6fs, 3.6μJ, 1.3  cycle transform-limited (TL) pulses with a peak power up to 1.4GW at a 1kHz repetition rate were generated in the visible to near-infrared region (the over-one-octave bandwidth of 450975nm). The fact that the IPM+SPM light was compressed to the TL duration is important toward the generation of a single, intense one-optical-cycle pulse in the visible region.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
    [CrossRef] [PubMed]
  2. M. Nisoli, S. De Silvestri, and O. Svelto, 'Generation of high energy 10 fs pulses by a new pulse compression technique,' Appl. Phys. Lett. 68, 2793-2795 (1996).
    [CrossRef]
  3. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
    [CrossRef]
  4. A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipocs, 'Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,' Opt. Lett. 20, 602-604 (1995).
    [CrossRef] [PubMed]
  5. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, 'Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,' IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  6. M. Yamashita, K. Yamane, and R. Morita, 'Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth-generation of few-to mono-cycle optical Pulses,' IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
    [CrossRef]
  7. R. R. Alfano and P. P. Ho, 'Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,' IEEE J. Quantum Electron. 24, 351-364 (1988).
    [CrossRef]
  8. M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, 'Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,' IEEE J. Quantum Electron. 34, 2145-2149 (1998).
    [CrossRef]
  9. L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Experimental generation of an ultra-broad spectrum based on induced-pulse modulation in a single-mode glass fiber,' Opt. Commun. 162, 256-260 (1999).
    [CrossRef]
  10. N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,' Opt. Lett. 25, 183-185 (2000).
    [CrossRef]
  11. M. Yamashita, M. Hirasawa, N. Nakagawa, K. Yamamoto, K. Oka, R. Morita, and A. Suguro, 'Pulse compression of white-light continuum generated by induced phase modulation in a conventional glass fiber,' J. Opt. Soc. Am. B 21, 458-462 (2004).
    [CrossRef]
  12. M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, 'Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,' Appl. Phys. B 74, S225-S229 (2002).
    [CrossRef]
  13. K. Yamane, Z. Zhang, K. Oka, r. Morita, M. Yamashita, and A. Suguro, 'Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,' Opt. Lett. 28, 2258-2260 (2003).
    [CrossRef] [PubMed]
  14. N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, 'Theory of ultrabroadband optical pulse generation by induced phase modulation in a gas-filled hollow waveguide,' J. Opt. Soc. Am. B 16, 662-668 (1999).
    [CrossRef]
  15. M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, 'Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,' Appl. Phys. B 74, S291-S294 (2002).
    [CrossRef]
  16. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904-033907 (2005).
    [CrossRef] [PubMed]
  17. F.X.Kärtner, ed. Few-Cycle Laser Pulses Generation and its Applications (Springer, 2004).

2006 (1)

M. Yamashita, K. Yamane, and R. Morita, 'Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth-generation of few-to mono-cycle optical Pulses,' IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

2005 (1)

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904-033907 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Yamashita, M. Hirasawa, N. Nakagawa, K. Yamamoto, K. Oka, R. Morita, and A. Suguro, 'Pulse compression of white-light continuum generated by induced phase modulation in a conventional glass fiber,' J. Opt. Soc. Am. B 21, 458-462 (2004).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

2003 (1)

2002 (2)

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, 'Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,' Appl. Phys. B 74, S225-S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, 'Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,' Appl. Phys. B 74, S291-S294 (2002).
[CrossRef]

2001 (1)

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, 'Theory of ultrabroadband optical pulse generation by induced phase modulation in a gas-filled hollow waveguide,' J. Opt. Soc. Am. B 16, 662-668 (1999).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Experimental generation of an ultra-broad spectrum based on induced-pulse modulation in a single-mode glass fiber,' Opt. Commun. 162, 256-260 (1999).
[CrossRef]

1998 (1)

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, 'Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,' IEEE J. Quantum Electron. 34, 2145-2149 (1998).
[CrossRef]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, 'Generation of high energy 10 fs pulses by a new pulse compression technique,' Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

1995 (1)

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, 'Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,' IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

1988 (1)

R. R. Alfano and P. P. Ho, 'Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,' IEEE J. Quantum Electron. 24, 351-364 (1988).
[CrossRef]

Alfano, R. R.

R. R. Alfano and P. P. Ho, 'Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,' IEEE J. Quantum Electron. 24, 351-364 (1988).
[CrossRef]

Biegert, J.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

Brabec, T.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Corkum, P.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Couairon, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, 'Generation of high energy 10 fs pulses by a new pulse compression technique,' Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Drescher, M.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Harris, S. E.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904-033907 (2005).
[CrossRef] [PubMed]

Hauri, C. P.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

Heinzmann, U.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

Hentschel, M.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Hirasawa, M.

M. Yamashita, M. Hirasawa, N. Nakagawa, K. Yamamoto, K. Oka, R. Morita, and A. Suguro, 'Pulse compression of white-light continuum generated by induced phase modulation in a conventional glass fiber,' J. Opt. Soc. Am. B 21, 458-462 (2004).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, 'Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,' Appl. Phys. B 74, S225-S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, 'Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,' Appl. Phys. B 74, S291-S294 (2002).
[CrossRef]

Ho, P. P.

R. R. Alfano and P. P. Ho, 'Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,' IEEE J. Quantum Electron. 24, 351-364 (1988).
[CrossRef]

Karasawa, N.

Keller, U.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

Kienberger, R.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

Krausz, F.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipocs, 'Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,' Opt. Lett. 20, 602-604 (1995).
[CrossRef] [PubMed]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, 'Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,' IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Lenzner, M.

Milosevic, N.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Morita, R.

M. Yamashita, K. Yamane, and R. Morita, 'Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth-generation of few-to mono-cycle optical Pulses,' IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

M. Yamashita, M. Hirasawa, N. Nakagawa, K. Yamamoto, K. Oka, R. Morita, and A. Suguro, 'Pulse compression of white-light continuum generated by induced phase modulation in a conventional glass fiber,' J. Opt. Soc. Am. B 21, 458-462 (2004).
[CrossRef]

K. Yamane, Z. Zhang, K. Oka, r. Morita, M. Yamashita, and A. Suguro, 'Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,' Opt. Lett. 28, 2258-2260 (2003).
[CrossRef] [PubMed]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, 'Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,' Appl. Phys. B 74, S225-S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, 'Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,' Appl. Phys. B 74, S291-S294 (2002).
[CrossRef]

N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,' Opt. Lett. 25, 183-185 (2000).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Experimental generation of an ultra-broad spectrum based on induced-pulse modulation in a single-mode glass fiber,' Opt. Commun. 162, 256-260 (1999).
[CrossRef]

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, 'Theory of ultrabroadband optical pulse generation by induced phase modulation in a gas-filled hollow waveguide,' J. Opt. Soc. Am. B 16, 662-668 (1999).
[CrossRef]

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, 'Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,' IEEE J. Quantum Electron. 34, 2145-2149 (1998).
[CrossRef]

Mysyrowicz, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

Nakagawa, N.

M. Yamashita, M. Hirasawa, N. Nakagawa, K. Yamamoto, K. Oka, R. Morita, and A. Suguro, 'Pulse compression of white-light continuum generated by induced phase modulation in a conventional glass fiber,' J. Opt. Soc. Am. B 21, 458-462 (2004).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, 'Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,' Appl. Phys. B 74, S225-S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, 'Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,' Appl. Phys. B 74, S291-S294 (2002).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Experimental generation of an ultra-broad spectrum based on induced-pulse modulation in a single-mode glass fiber,' Opt. Commun. 162, 256-260 (1999).
[CrossRef]

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, 'Generation of high energy 10 fs pulses by a new pulse compression technique,' Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Oka, K.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, 'Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,' IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Reider, G. A.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Shibata, M.

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, 'Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,' Appl. Phys. B 74, S291-S294 (2002).
[CrossRef]

Shigekawa, H.

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, 'Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,' Appl. Phys. B 74, S225-S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, 'Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,' Appl. Phys. B 74, S291-S294 (2002).
[CrossRef]

N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,' Opt. Lett. 25, 183-185 (2000).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Experimental generation of an ultra-broad spectrum based on induced-pulse modulation in a single-mode glass fiber,' Opt. Commun. 162, 256-260 (1999).
[CrossRef]

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, 'Theory of ultrabroadband optical pulse generation by induced phase modulation in a gas-filled hollow waveguide,' J. Opt. Soc. Am. B 16, 662-668 (1999).
[CrossRef]

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, 'Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,' IEEE J. Quantum Electron. 34, 2145-2149 (1998).
[CrossRef]

Shverdin, M. Y.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904-033907 (2005).
[CrossRef] [PubMed]

Sone, H.

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, 'Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,' IEEE J. Quantum Electron. 34, 2145-2149 (1998).
[CrossRef]

Spielmann, Ch.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipocs, 'Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,' Opt. Lett. 20, 602-604 (1995).
[CrossRef] [PubMed]

Stingl, A.

Suguro, A.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, 'Generation of high energy 10 fs pulses by a new pulse compression technique,' Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Szipocs, R.

Walker, D. R.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904-033907 (2005).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, 'Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,' IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, 'Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,' IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Xu, L.

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Experimental generation of an ultra-broad spectrum based on induced-pulse modulation in a single-mode glass fiber,' Opt. Commun. 162, 256-260 (1999).
[CrossRef]

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, 'Theory of ultrabroadband optical pulse generation by induced phase modulation in a gas-filled hollow waveguide,' J. Opt. Soc. Am. B 16, 662-668 (1999).
[CrossRef]

Yamamoto, K.

M. Yamashita, M. Hirasawa, N. Nakagawa, K. Yamamoto, K. Oka, R. Morita, and A. Suguro, 'Pulse compression of white-light continuum generated by induced phase modulation in a conventional glass fiber,' J. Opt. Soc. Am. B 21, 458-462 (2004).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, 'Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,' Appl. Phys. B 74, S225-S229 (2002).
[CrossRef]

Yamane, K.

M. Yamashita, K. Yamane, and R. Morita, 'Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth-generation of few-to mono-cycle optical Pulses,' IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

K. Yamane, Z. Zhang, K. Oka, r. Morita, M. Yamashita, and A. Suguro, 'Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,' Opt. Lett. 28, 2258-2260 (2003).
[CrossRef] [PubMed]

Yamashita, M.

M. Yamashita, K. Yamane, and R. Morita, 'Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth-generation of few-to mono-cycle optical Pulses,' IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

M. Yamashita, M. Hirasawa, N. Nakagawa, K. Yamamoto, K. Oka, R. Morita, and A. Suguro, 'Pulse compression of white-light continuum generated by induced phase modulation in a conventional glass fiber,' J. Opt. Soc. Am. B 21, 458-462 (2004).
[CrossRef]

K. Yamane, Z. Zhang, K. Oka, r. Morita, M. Yamashita, and A. Suguro, 'Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,' Opt. Lett. 28, 2258-2260 (2003).
[CrossRef] [PubMed]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, 'Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,' Appl. Phys. B 74, S225-S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, 'Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,' Appl. Phys. B 74, S291-S294 (2002).
[CrossRef]

N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,' Opt. Lett. 25, 183-185 (2000).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Experimental generation of an ultra-broad spectrum based on induced-pulse modulation in a single-mode glass fiber,' Opt. Commun. 162, 256-260 (1999).
[CrossRef]

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, 'Theory of ultrabroadband optical pulse generation by induced phase modulation in a gas-filled hollow waveguide,' J. Opt. Soc. Am. B 16, 662-668 (1999).
[CrossRef]

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, 'Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,' IEEE J. Quantum Electron. 34, 2145-2149 (1998).
[CrossRef]

Yavuz, D. D.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904-033907 (2005).
[CrossRef] [PubMed]

Yin, G. Y.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904-033907 (2005).
[CrossRef] [PubMed]

Zhang, Z.

Appl. Phys. B (3)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, 'Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,' Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, 'Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,' Appl. Phys. B 74, S225-S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, 'Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,' Appl. Phys. B 74, S291-S294 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, 'Generation of high energy 10 fs pulses by a new pulse compression technique,' Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, 'Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,' IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

R. R. Alfano and P. P. Ho, 'Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,' IEEE J. Quantum Electron. 24, 351-364 (1988).
[CrossRef]

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, 'Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,' IEEE J. Quantum Electron. 34, 2145-2149 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Yamashita, K. Yamane, and R. Morita, 'Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth-generation of few-to mono-cycle optical Pulses,' IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 'Attosecond metrology,' Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, 'Experimental generation of an ultra-broad spectrum based on induced-pulse modulation in a single-mode glass fiber,' Opt. Commun. 162, 256-260 (1999).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, 'Generation of a single-cycle optical pulse,' Phys. Rev. Lett. 94, 033904-033907 (2005).
[CrossRef] [PubMed]

Other (1)

F.X.Kärtner, ed. Few-Cycle Laser Pulses Generation and its Applications (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for extremely short-pulse generation. BS1, beam splitter with a split ratio of 9:1 ( = reflectance : transmittance ) BS2, beam splitter with a split ratio of 1:2. BBO, type I β-barium borate crystal with a 0.5 mm thickness. PS, periscopes. DM, dichroic mirror. CM1 and CM2, concave mirrors with a focal length of 400 and 200 mm , respectively. G 1 and G 2 , gratings with a groove of 384.6   lines mm . CM3 and CM4, concave mirrors with a focal length of 200 mm . ICCD, intensified CCD detector.

Fig. 2
Fig. 2

Spectra of ultrabroadband optical pulses generated by only SPM effect (gray curves) and by SPMs and IPM (black curve). Input pulse energy of ω ( 2 ω ) pulse was 182 ( 116 ) μ J . Output pulse energy of the IPM + SPM light was 67 μ J .

Fig. 3
Fig. 3

M-SPIDER signal before feedback chirp compensation.

Fig. 4
Fig. 4

Spectral phases (i) before (broken curve) and (ii) after (thin solid curve) second feedback chirp compensation (scale is left axis). (iii) Expanded spectral phase of the second feedback (thick solid curve, scale is right axis).

Fig. 5
Fig. 5

Temporal intensity profile of compressed pulses (solid curve) and that of TL pulses (dotted curve). Broken curve shows the temporal-phase profile of compressed pulses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ω z = α ω 2 A ω + i n 2 ω c [ f ω ω A ω 2 + 2 f ω 2 ω A 2 ω 2 ] A ω ,
A 2 ω z = α 2 ω 2 A 2 ω + i 2 n 2 ω c [ f 2 ω 2 ω A ω 2 + 2 f 2 ω ω A ω 2 ] A 2 ω ,

Metrics